

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

UCI-AM-11-203

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Investigating Advances in the Acquisition of Secure Systems

Based on Open Architecture, Open Source Software, and
Software Product Lines

27 January 2012

by

Dr. Walt Scacchi, Senior Research Scientist, and

Dr. Thomas A. Alspaugh, Assistant Professor

Institute for Software Research

University of California, Irvine

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
27 JAN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Investigating Advances in the Acquisition of Secure Systems Based on
Open Architecture, Open Source Software, and Software Product Lines

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Irvine,Institute for Software
Research,Irvine,CA,92697-3455

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The role of software acquisition ecosystems in the development and evolution of secure open architecture
systems has received insufficient consideration. Such systems are composed of software components
subject to different security requirements in an architecture in which evolution can occur by evolving
existing components or by replacing them. However, this may result in possible security requirements
conflicts and organizational liability for failure to fulfill security obligations. We have developed an
approach for understanding and modeling software security requirements as ?security licenses,? for
analyzing conflicts among groups of such licenses in realistic system contexts, and for guiding the
acquisition integration, or development of systems with open source components in such an environment.
Consequently, this paper reports on our efforts to extend our existing approach to specifying and analyzing
software intellectual property licenses to now address software security licenses that can be associated with
secure OA systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

107

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented in this report was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
e-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -
k^s^i=mlpqdo^ar^qb=p`elli=

Table of Contents

I. Advances in the Acquisition of Secure Systems Based on
Open Architectures .. 1

Abstract .. 1

Biographies .. 1

A. Introduction .. 2

B. Related Work ... 7

C. Secure Open Architecture Composition .. 10

D. OA System Evolution ... 18

E. Security Licenses .. 22

F. Security License Architectures .. 24

G. Security License Analysis .. 25

H. Discussion ... 27

I. Conclusion ... 30

Acknowledgments .. 31

References ... 31

II. Presenting Software License Conflicts through
Argumentation .. 35

Abstract .. 35

A. Introduction .. 35

B. Related Work ... 38

C. Licensing Background ... 39

D. License Rights and Obligations ... 43

E. Applying Licenses to Software .. 46

F. Conclusion ... 53

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -
k^s^i=mlpqdo^ar^qb=p`elli=

Acknowledgements .. 53

References ... 54

III. Modding as an Open Source Approach to Extending
Computer Game Systems .. 57

Abstract .. 57

A. Introduction .. 57

B. Related Work ... 60

C. Four Types of Game Mods .. 63

D. Game Modding Software Tools and Support 69

E. Opportunities and Constraints for Modding 71

F. Conclusions ... 72

Acknowledgments .. 73

References ... 74

IV. Modding as a Basis for Developing Game Systems 77

Abstract .. 77

A. Introduction .. 78

B. Software Extension .. 80

C. Four Types of Game Mods .. 81

D. Game Modding Software tools and Support 86

E. Opportunities for Modding and Software Engineering 88

Acknowledgements .. 88

References ... 88

V. Final Report Discussion and Prospects for Future
Acquisition Research .. 91

A. Overview ... 91

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iii -
k^s^i=mlpqdo^ar^qb=p`elli=

B. Inter-Project Research Coordination ... 92

C. Prospects for Longer Term Acquisition-Related Research 92

Acknowledgments .. 93

References ... 93

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iv -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 1 -
k^s^i=mlpqdo^ar^qb=p`elli=

I. Advances in the Acquisition of Secure
Systems Based on Open Architectures

Walt Scacchi and Thomas A. Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

wscacchi@ics.uci.edu, thomas.alspaugh@acm.org

Abstract

The role of software acquisition ecosystems in the development and evolution

of secure open architecture systems has received insufficient consideration. Such

systems are composed of software components subject to different security

requirements in an architecture in which evolution can occur by evolving existing

components or by replacing them. However, this may result in possible security

requirements conflicts and organizational liability for failure to fulfill security

obligations. We have developed an approach for understanding and modeling

software security requirements as “security licenses,” for analyzing conflicts among

groups of such licenses in realistic system contexts, and for guiding the acquisition,

integration, or development of systems with open source components in such an

environment. Consequently, this paper reports on our efforts to extend our existing

approach to specifying and analyzing software intellectual property licenses to now

address software security licenses that can be associated with secure OA systems.

Biographies

Walt Scacchi is a senior research scientist and research faculty member at

the Institute for Software Research, University of California, Irvine. He received a

PhD in Information and Computer Science from UC Irvine in 1981. From 1981–1998,

he was on the faculty at the University of Southern California. In 1999, he joined the

Institute for Software Research at UC Irvine. He has published more than 150

research papers and has directed 45 externally funded research projects. In 2007,

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 2 -
k^s^i=mlpqdo^ar^qb=p`elli=

he served as General Chair of the 3rd IFIP International Conference on Open

Source Systems (OSS2007), Limerick, IE. In 2010, he chaired the Workshop on the

Future of Research in Free and Open Source Software, Newport Beach, CA, for the

Computing Community Consortium and the National Science Foundation. He also

serves as Co-Chair of the Software Engineering in Practice (SEIP) Track at the 33rd

International Conference on Software Engineering, May 21–28, 2011, Honolulu, HI.

Thomas Alspaugh is adjunct professor of Computer Science at Georgetown

University and a visiting researcher at the Institute for Software Research at UC

Irvine. His research interests are in software engineering and software requirements.

Before completing his Ph.D., he worked as a software developer, team lead, and

manager in industry, and as a computer scientist at the Naval Research Laboratory

on the Software Cost Reduction project, also known as the A-7E project.

A. Introduction

A substantial number of development organizations are adopting a strategy in

which a software-intensive system is developed with an open architecture (OA;

Oreizy, 2000), whose components may be open source software (OSS) or

proprietary with open application programming interfaces (APIs). Such systems

evolve not only through the evolution of their individual components, but also

through replacement of one component by another, possibly from a different

producer or under a different license. With this approach to software system

acquisition, the system development organization becomes an integrator of

components largely produced elsewhere that are interconnected through open APIs

as necessary to achieve the desired result.

An OA development process arises in a software acquisition ecosystem in

which the integrator is influenced from one direction by the goals, interfaces, license

choices, and release cycles of the component producers, and in another direction by

the needs of its consumers. As a result, the software components are reused more

widely, and the resulting OA systems can achieve reuse benefits such as reduced

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 3 -
k^s^i=mlpqdo^ar^qb=p`elli=

costs, increased reliability, and potentially increased agility in evolving to meet

changing needs.

An emerging challenge is to realize the benefits of this approach when the

individual components are subject to different security requirements. This may arise

due either to how a component’s external interfaces are specified and defended, or

to how system components are interconnected and configured in ways that can or

cannot defend the composed system from security vulnerabilities and external

exploits. Ideally, any software element in a system composed from components from

different producers can have its security capabilities specified, analyzed, and

implemented at system architectural design-time, build-time, or at deployment run-

time. Such capability-based security in its simplest form specifies what types, value

ranges, and values of data, or control signals (e.g., program invocations, procedure

or method calls), can be input, output, or handed off to a software plug-in or external

(helper) application from a software component or composed system.

When designing a secure OA system, decisions and trade-offs must be made

as to what level of security is required, as well as to what kinds of threats to security

must be addressed. The universe of possible security threats is continually emerging

and the cost/effort of defending against them is ongoing. Similarly, anticipating all

possible security vulnerabilities or threats is impractical (or impossible). Further,

though it may be desirable that all systems be secure, different systems need

different levels of security, which may come at ever greater cost or inconvenience in

order to accommodate. Strategic systems may need the greatest security possible,

whereas other systems may require much less rigorous security mechanisms. Thus,

finding an affordable, scalable, and testable means for specifying the security

requirements of software components, or OA systems composed with components

with different security requirements, is the goal of our research.

The most basic form of security requirements that can be asserted and tested

are those associated with virtual machines. Virtual machines (VM) abstract away the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 4 -
k^s^i=mlpqdo^ar^qb=p`elli=

actual functional or processing capabilities of the computational systems on which

they operate, and instead provide a limited functionality computing surround (or

“sandbox”). VM can isolate a given component or system, other software

applications, utilities, repositories, or external/remote control data access (input or

output). The capabilities for a VM (e.g., an explicit, pre-defined list of approved

operating system commands or programs that can write data or access a repository)

can be specified as testable conditions that can be assigned to users or programs

authorized to operate within the VM. The VM technique is now widely employed

through software “hypervisors” (e.g., IBM VM/370, VMware, VirtualBox, Parallels

Desktop for Mac) that isolate software applications and operating systems from the

underlying system platform or hardware. Such VM act like “containment vessels”

through which it is possible to specify barriers to entry (and exit) of data and control

via security capabilities that restrict other programs. Thus, these capabilities specify

what rights or obligations may be, or may not be, available for access or update to

data or control information. Thus, architectural design-time decisions pertaining to

specifying the security rights or obligations for the overall system or its components

are done by specification of VM that contain the composed system or its

components. These rights or obligations can be specified as pre-conditions on input

data or control signals, or post-conditions on output data or control signals.

The problem of specifying the build-time and run-time security requirements

of OA systems is different from that at design-time. In determining how to specify the

software build sequence, security requirements are manifest as capabilities that may

be specific to explicitly declared versions of designated programs. For example, if an

OA system at design-time specifies a “Web browser” as one of its components, at

build-time a particular Web browser (Mozilla Firefox or Internet Explorer) must then

be specified, as must its baseline version (e.g., Firefox 4.0 or Internet Explorer 9.0).

However, if the resulting run-time version of the OA system must instead employ a

locally available Web browser (e.g., Firefox 3.6.1 or Internet Explorer 8.0 Service

Pack 2), then the OA system integrators may either need to produce multiple run-

time versions for deployment, or else build the OA system using (a) an earlier

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 5 -
k^s^i=mlpqdo^ar^qb=p`elli=

version of the necessary component (e.g., Firefox 3.5 or Internet Explorer 7.0) that is

“upward compatible” with newer browser versions, (b) a stub or abstract program

interface that allows for a later designated compatible component version to be

installed/used at run-time, or else (c) create different run-time version alternatives

(i.e., variants) of the target OA systems that may or may not be “backward

compatible” with the legacy system component versions available in the deployment

run-time environment. The need to specify build-time and run-time components by

hierarchical version numbers like Firefox 3.6.16.144 (and possibly timestamps of

their creation or local installation) arises because evolutionary version updates often

include security patches that close known vulnerabilities or prevent known exploits.

As indicated in Section 2, Related Work, security attacks often rely on system entry

through known vulnerabilities that are present in earlier versions of software

components that have not been updated to newer versions that don’t have the same

vulnerabilities.

Because we have been able to address an analogous problem of how to

specify and analyze the intellectual property rights and obligations of the licenses of

software components, our efforts now focus on the challenge of how to specify and

analyze software components and composed system security rights and obligations

using a new information structure we call a “security license.” The actual form of

such a security license is still to be finalized, but at this point, we believe it is

appropriate to begin to develop candidate forms or types of security licenses for

further research and development, especially for security license forms that can be

easily formalized, readily applied to large-scale OA systems, and be automatically

analyzed or tested in ways that we have already established (Alspaugh, Asuncion, &

Scacchi, 2010; Alspaugh, Scacchi, & Asuncion, 2010). This is another goal of our

research here.

Next, the challenge of specifying secure software systems composed from

secure or insecure components is inevitably entwined with the software ecosystems

that arise for secure OA systems. We found that an OA software acquisition

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 6 -
k^s^i=mlpqdo^ar^qb=p`elli=

ecosystem involves organizations and individuals producing and consuming

components, and supply paths from producer to consumer; but also

 the OA of the system(s) in question, and how best to secure it,

 the open interfaces provided by the components, and how to specify
their security requirements,

 the degree of coupling in the evolution of related components that can
be assessed in terms of how security rights and obligations may
change, and

 the rights and obligations resulting from the security licenses under
which various components are released that propagate from producers
to consumers.

An example of a software acquisition ecosystem producing and integrating

secure software components or secure systems is portrayed in Figure 1.

Figure 1. An Example of a Software Acquisition Ecosystem in Which
Secure OA Systems May Be Developed

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 7 -
k^s^i=mlpqdo^ar^qb=p`elli=

In order to most effectively use an OA approach in developing and evolving a

system, it is essential to consider this OA ecosystem. An OA system draws on

components from proprietary vendors and open source projects. Its architecture is

made possible by the existing general ecosystem of producers, from which the initial

components are chosen. The choice of a specific OA begins a specialized software

ecosystem involving components that meet (or can be shimmed to meet) the open

interfaces used in the architecture. We do not claim that this is the best or the only

way to reuse components or to produce secure OA systems, but it is an ever more

widespread way. In this paper we built on previous work on heterogeneously

licensed systems (Alspaugh, Asuncion, et al., 2009a; German & Hassan, 2009;

Scacchi & Alspaugh, 2008) by examining how OA development affects and is

affected by software ecosystems and the role of security licenses for components

included within OA software ecosystems.

In the remainder of this paper, we survey some related work (Section 2),

define and examine characteristics of open architectures with or without secure

software elements (Section 3), define and examine characteristics for how secure

OA systems evolve (Section 4), introduce a structure for security licenses (Section

5), outline security license architectures (Section 6), and sketch our approach for

security license analysis (Section 7). We then close with a discussion addressing

how our software license and analysis scheme relates to software product lines

(Section 8) before stating our conclusions (Section 9).

B. Related Work

Software systems, whether operating as standalone components or as

elements within large system compositions, are continuously being subjected to

security attacks. These attacks seek to slip through software vulnerabilities known to

the attackers but perhaps not to the system integrators or consumers. These attacks

often seek to access, manipulate, or remotely affect the data values or control

signals that a component or composed system processes for nefarious purposes or

seek to congest or over-saturate networked services. Recent high profile security

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 8 -
k^s^i=mlpqdo^ar^qb=p`elli=

attacks like Stuxnet (Falliere, Murchu, & Chien, 2011) reveal that security attacks

may be very well planned and employ a bundle of attack vectors and social

engineering tactics in order for the attack to reach strategic systems that are mostly

isolated and walled off from public computer networks. The Stuxnet attack entered

through software system interfaces at either the component, application subsystem,

or base operating system level (e.g., via removable thumb drive storage devices),

and their goal was to go outside or beneath their entry context. However, all of the

Stuxnet attacks on the targeted software system could be blocked or prevented

through security capabilities associated with the open software interfaces that would

(a) limit access or evolutionary update rights lacking proper authorization, as well as

through (b) “sandboxing” (i.e., isolating) and holding up any evolutionary updates

(the attacks) prior to their installation and run-time deployment. Furthermore,

because the Stuxnet attack involved the use of corrupted certificates of trust from

approved authorities as false credentials that allowed evolutionary system updates

to go forward, it seems clear that additional preventions are needed that are external

to, and prior to, their installation and run-time deployment. In our case, that means

that we need to specify and analyze software security requirements and evolutionary

update capabilities at architectural design-time and system integration build-time,

and then reconcile those with the run-time system composition. It also calls for the

need to maintain the design-time, build-time, and run-time system compositions in

repositories remote from system installations, and in possibly redundant locations

that can be encrypted, randomized, fragmented, and dispersed (e.g., via Torrents or

“onion routing”) then cross-checked and independently verified prior to run-time

deployment in a high security system application.

As already noted, both software intellectual property licenses and security

licenses represent a collection of rights and obligations for what can or cannot be

done with a licensed software component. Licenses thus denote non-functional

requirements that apply to a software system or system components as intellectual

property (IP) or security requirements (i.e., capabilities) during their development

and deployment. However, rights and obligations are not limited to concerns or

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 9 -
k^s^i=mlpqdo^ar^qb=p`elli=

constraints applicable only to software as IP. Instead, they can be written in ways

that stipulate non-functional requirements of different kinds. Consider, for example,

that desired or necessary software system security properties can also be expressed

as rights and obligations addressing system confidentiality, integrity, accountability,

system availability, and assurance (Breaux & Anton, 2005, 2008). Traditionally,

developing robust specifications for non-functional software system security

properties in natural language often produces specifications that are ambiguous,

misleading, inconsistent across system components, and lacking sufficient details

(Yau & Chen, 2006). Using a semantic model to formally specify the rights and

obligations required for a software system or component to be secure (Breaux &

Anton, 2005, 2008; Yau & Chen, 2006) means that it may be possible to develop

both a “security architecture” notation and model specification that associates given

security rights and obligations across a software system or system of systems.

Similarly, it suggests the possibility of developing computational tools or interactive

architecture development environments that can be used to specify, model, and

analyze a software system’s security architecture at different times in its

development—design-time, build-time, and run-time. The approach we have been

developing for the past few years for modeling and analyzing software system IP

license architectures for OA systems (Alspaugh, Asuncion, et al., 2009b, 2010;

Aslpaugh, Scacchi, et al., 2010; Scacchi & Alspaugh, 2008) may therefore be

extendable to also being able to address OA systems with heterogeneous “software

security license” rights and obligations. Furthermore, the idea of common or

reusable software security licenses may be analogous to the reusable security

requirements templates proposed by Firesmith (2004) at the Software Engineering

Institute. But such an exploration and extension of the semantic software license

modeling, meta-modeling, and computational analysis tools to also support software

system security can be recognized as a promising next stage of our research

studies.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 10 -
k^s^i=mlpqdo^ar^qb=p`elli=

C. Secure Open Architecture Composition

Open architecture (OA) software is a customization technique introduced by

Oreizy (2000) that enables third parties to modify a software system through its

exposed architecture, evolving the system by replacing its components. Increasingly

more software-intensive systems are developed using an OA strategy, not only with

open source software (OSS) components but also proprietary components with open

APIs. Similarly, these components may or may not have their own security

requirements that must be satisfied during their build-time integration or run-time

deployment, such as registering the software component for automatic update and

installation of new software versions that patch recently discovered security

vulnerabilities or prevent invocation of known exploits. Using this approach can

lower development costs and increase reliability and function as well as adaptively

evolve software security (Scacchi & Alspaugh, 2008). Composing a system with

heterogeneously secured components, however, increases the likelihood of

conflicts, liabilities, and no-rights stemming from incompatible security requirements.

Thus, in our work we define a secure OA system as a software system consisting of

components that are either open source or proprietary with open API, whose overall

system rights at a minimum allow its use and redistribution, in full or in part, such

that they do not introduce new security vulnerabilities at the system architectural

level.

It may appear that using a system architecture that incorporates secure OSS

and proprietary components and uses open APIs will result in a secure OA system.

However, not all such architectures will produce a secure OA because the (possibly

empty) set of available license rights for an OA system depends on (a) how and why

secure or insecure components and open APIs are located within the system

architecture, (b) how components and open APIs are implemented, embedded, or

interconnected, and (c) the degree to which the IP and security licenses of different

OSS components encumber all or part of a software system’s architecture into which

they are integrated (Alspaugh & Anton, 2008; Scacchi & Alspaugh, 2008).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 11 -
k^s^i=mlpqdo^ar^qb=p`elli=

The following kinds of software elements appearing in common software

architectures can affect whether the resulting systems are open or closed (Bass,

Clements, & Kazman, 2003).

Software source code components—These can be either (a) standalone

programs, (b) libraries, frameworks, or middleware, (c) inter-application script code

such as C shell scripts, (d) intra-application script code, such as for creating Rich

Internet Applications using domain-specific languages such as XUL for the Firefox

Web browser (Feldt, 2007) or “mashups” (Nelson & Churchill, 2006), whose source

code is available and they can be rebuilt, or (e) similar script code that can either

install and invoke externally developed plug-in software components or invoke

external application (helper) components. Each may have its own distinct IP/security

requirements.

Executable components—These components are in binary form and the

source code may not be open for access, review, modification, or possible

redistribution (Rosen, 2005). If proprietary, they often cannot be redistributed, and so

such components will be present in the design- and run-time architectures but not in

the distribution-time architecture.

Software services—An appropriate software service can replace a source

code or executable component.

Application programming interfaces/APIs—Availability of externally visible

and accessible APIs is the minimum requirement for an “open system” (Meyers &

Oberndorf, 2001).

Software connectors—The intended purpose of this software is to provide a

standard or reusable way of communication through common interfaces (e.g., High

Level Architecture [Kul, Weatherly, & Dahmann, 1999], CORBA, MS .NET,

Enterprise Java Beans, and GNU Lesser General Public License [LGPL] libraries).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 12 -
k^s^i=mlpqdo^ar^qb=p`elli=

Connectors can also limit the propagation of IP license obligations or provide

additional security capabilities.

Methods of connection—These include linking as part of a configured

subsystem, dynamic linking, and client-server connections. Methods of connection

affect license obligation propagation, with different methods affecting different

licenses.

Configured system or subsystem architectures—These are software

systems that are used as atomic components of a larger system and whose internal

architecture may comprise components with different licenses, affecting the overall

system license and its security requirements. To minimize license interaction, a

configured system or sub-architecture may be surrounded by what we term a license

firewall, namely a layer of dynamic links, client-server connections, license shims, or

other connectors that block the propagation of reciprocal obligations.

Figure 2 shows a high-level, run-time view of a composed OA system whose

reference architectural design in Figure 3 includes all of the kinds of software

elements listed in the previous paragraphs. This reference architecture has been

instantiated in a build-time configuration in Figure 4 that in turn could be realized in

alternative run-time configurations in Figures 5, 6, and 7 with different security

capabilities. The configured systems consist of software components such as a

Mozilla Web browser, Gnome Evolution email client, and AbiWord word processor

(similar to MS Word), all running on a RedHat Fedora Linux operating system

accessing file, print, and other remote networked servers such as an Apache Web

server. The components are interconnected through a set of software connectors

that bridge the interfaces of components and combine the provided functionality into

the system’s services. However, note how the run-time software architecture does

not pre-determine how security capabilities will be assigned and distributed across

different variants of the run-time composition.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 13 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 2. An Example Composite OA System Potentially Subject to Different
IP and Security Licenses

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 14 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 3. The Design-Time Architecture of the System in Figure 2
That Specifies a Required Security Containment Vessel Scheme

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 15 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 4. A Secure Build-Time Architecture Describing the Version Running in
Figure 2 with a Specified Security Containment Vessel Scheme

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 16 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 5. Instantiated Build-Time OA System with Maximum Security
Architecture of Figure 4 Via Individual Security Containment Vessels for Each

System Element

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 17 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 6. Instantiated Build-Time OA System with Minimum Security Architecture
of Figure 4 Via a Single Overall Security Containment Vessel for the Complete

System Using a Common Software Hypervisor

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 18 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 7. Instantiated Build-Time OA System with Mixed Security Architecture of
Figure 4 Via Security Containment Vessels for Some Groupings of System

Elements

D. OA System Evolution

An OA system can evolve by a number of distinct mechanisms, some of

which are common to all systems but others of which are a result of heterogeneous

IP and security licenses in a single system.

1. By component evolution

One or more components can evolve, altering the overall system’s

characteristics (for example, upgrading and replacing the Firefox Web browser from

version 3.5 to 3.6, which may update existing software functionality while also

patching recent security vulnerabilities).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 19 -
k^s^i=mlpqdo^ar^qb=p`elli=

2. By component replacement

One or more components may be replaced by others with different behaviors

but the same interface, or with a different interface and with the addition of shim

code to make it match (for example, replacing the AbiWord word processor with

either Open Office or MS Word, depending on which is considered the least

vulnerable to security attack).

3. By architecture evolution

The OA can evolve, using the same components but in a different

configuration, altering the system’s characteristics. For example, as discussed in

Section 3, changing the configuration in which a component is connected can

change how its IP or security license affects the rights and obligations for the overall

system. This could arise when replacing email and word processing applications

with web services like Google Mail and Google Docs, which we might assume may

be more secure because the Google services (operating in a cloud environment)

may not be easily accessed or penetrated by a security attack.

4. By component license evolution

The license under which a component is available may change, as for

example when the license for the Mozilla core components was changed from the

Mozilla Public License (MPL) to the current Mozilla Disjunctive Tri-License; or the

component may be made available under a new version of the same license, as for

example when the GNU General Public License (GPL) version 3 was released.

Similarly, the security license for a component may be changed by its producers, or

the security license for a composed system changed by its integrators, in order to

prevent or deter recently discovered security vulnerabilities or exploits before an

evolutionary version update (or patch) can be made available.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 20 -
k^s^i=mlpqdo^ar^qb=p`elli=

5. By a change to the desired rights or acceptable obligations

The OA system’s integrator or consumers may desire additional IP or security

license rights (for example the right to sublicense in addition to the right to

distribute), or no longer desire specific rights; or the set of license obligations they

find acceptable may change. In either case, the OA system evolves, whether by

changing components, evolving the architecture, or other means in order to provide

the desired rights within the scope of the acceptable obligations. For example, they

may no longer be willing or able to provide the source code for components that

have known vulnerabilities that have not been patched and eliminated.

Figure 8. A Second Instantiation at Run-Time

Note. This is the OA system in Figures 2, 3, and 4 (Firefox, Google Docs and

Calendar operating within different Firefox run-time sessions, Fedora) as an

evolutionary alternative system version, which requires an alternative security

containment scheme.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 21 -
k^s^i=mlpqdo^ar^qb=p`elli=

The interdependence of integrators and producers results in a co-evolution of

software within an OA ecosystem. Closely-coupled components from different

producers must evolve in parallel in order for each to provide its services, as

evolution in one will typically require a matching evolution in the other. Producers

may manage their evolution with a loose coordination among releases, for example

as between the Gnome and Mozilla organizations. Each release of a producer

component creates a tension through the ecosystem relationships with consumers

and their releases of OA systems using those components, because integrators

accommodate the choices of available, supported components with their own goals

and needs. As discussed in our previous work (Alspaugh, Asuncion, et al., 2009a),

license rights and obligations are manifested at each component’s interface, then

mediated through the system’s OA to entail the rights and corresponding obligations

for the system as a whole. As a result, integrators must frequently re-evaluate an OA

system’s IP/security rights and obligations. In contrast to homogeneously-licensed

systems, license change across versions is a characteristic of OA ecosystems, and

architects of OA systems require tool support for managing the ongoing licensing

changes.

We propose that such support must have several characteristics.

 It must rest on a license structure of rights and obligations (Section 5),
focusing on obligations that are enactable and testable.

 It must take account of the distinctions between the design-time, build-
time, and distribution-time architectures (Sections 3, 5, 6) and the
rights and obligations that come into play for each of them.

 It must distinguish the architectural constructs significant for software
licenses, and embody their effects on rights and obligations (Section
3).

 It must define license architectures (Section 6).

 It must provide an automated environment for creating and managing
license architectures. We are developing a prototype that manages a
license architecture as a view of its system architecture (Alspaugh,
Asuncion, et al., 2009a).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 22 -
k^s^i=mlpqdo^ar^qb=p`elli=

 Finally, it must automate calculations on system rights and obligations
so that they may be done easily and frequently, whenever any of the
factors affecting rights and obligations may have changed (Section 7).

E. Security Licenses

Licenses typically impose obligations that must be met in order for the

licensee to realize the assigned rights. Common IP/copyright license obligations

include the obligation to publish at no cost any source code you modify (MPL) or the

reciprocal obligation to publish all source code included at build-time or statically

linked (GPL). The obligations may conflict, as when a GPL’d component’s reciprocal

obligation to publish source code of other components is combined with a

proprietary component’s license prohibition of publishing its source code. In this

case, no rights may be available for the system as a whole, not even the right of use,

because the two obligations cannot simultaneously be met and thus neither

component can be used as part of the system. Security capabilities can similarly be

expressed and bound to the data values and control signals that are visible in

component interfaces, or through component connectors.

Some typical security rights and obligations might be

 the right to read data in containment vessel T,

 the obligation for a specific component to have been vetted for the
capability to read and update data in containment vessel T,

 the obligation for a user to verify his/her authority to see containment
vessel T by password or other specified authentication process,

 the right to replace specified component C with some other
component,

 the right to add or update specified component D in a specified
configuration, and

 the right to add, update, or remove a security mechanism.

The basic relationship between software IP/security license rights and

obligations can be summarized as follows: if the specified obligations are met, then

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 23 -
k^s^i=mlpqdo^ar^qb=p`elli=

the corresponding rights are granted. For example, if you publish your modified

source code and sub-licensed derived works under MPL, then you get all of the MPL

rights for both the original and the modified code. Similarly, software security

requirements are specified as security obligations that when met, allow designated

users or other software programs to access, modify, and redistribute data and

control information to designated repositories or remote services. However, license

details are complex, subtle, and difficult to comprehend and track—it is easy to

become confused or make mistakes. The challenge is multiplied when dealing with

configured system architectures that compose a large number of components with

heterogeneous IP/security licenses, so that the need for legal counsel begins to

seem inevitable (Fontana et al., 2008; Rosen, 2005).

We have developed an approach for expressing software licenses of different

types (intellectual property and security requirements) that is more formal and less

ambiguous than natural language, and that allows us to calculate and identify

conflicts arising from the rights and obligations of two or more components’ licenses.

Our approach is based on Hohfeld’s (1913) classic group of eight fundamental jural

relations, of which we use right, duty, no-right, and privilege. We start with a tuple

<actor, operation, action, object> for expressing a right or obligation. The actor is the

“licensee” for all of the licenses we have examined. The operation is one of the

following: may, must, must not, or need not, with may and need not expressing

rights and must and must not expressing obligations. The action is a verb or verb

phrase describing what may, must, must not, or need not be done, with the object

completing the description. A license may be expressed as a set of rights, with each

right associated with zero or more obligations that must be fulfilled in order to enjoy

that right. Figure 9 shows the meta-model with which we express licenses.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 24 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 9. Security License Meta-Model

Designers of secure systems have developed a number heuristics to guide

architectural design in order to satisfy overall system security requirements while

avoiding conflicts among interacting security mechanisms or defenses. However,

even using design heuristics (and there are many), keeping track of security rights

and obligations across components that are interconnected in complex OAs quickly

becomes too cumbersome. Automated support is needed to manage the complexity

of multi-component system compositions where different security requirements must

be addressed through different security capabilities.

F. Security License Architectures

Our security license model forms a basis for effective reasoning about

licenses in the context of actual systems and for calculating the resulting rights and

obligations. In order to do so, we need a certain amount of information about the

system’s configuration at design-time, build-time, and run-time deployment. The

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 25 -
k^s^i=mlpqdo^ar^qb=p`elli=

needed information comprises the license architecture, and an abstraction of the

system architecture:

1. the set of components of the system (for example, see Figure 2) for the
current system configuration, as well as subsequently for system
evolution update versions (as seen in Figure 8);

2. the relation mapping each component to its security requirements
(specified and analyzed at design-time, as exemplified in Figure 3) or
capabilities (specified and analyzed at build-time in Figure 4 and run-
time across alternatives shown in Figure 5, 6, and 7);

3. the connections between components and the security requirements or
capabilities of each connector passing data or control signals to/from it;
and

4. possibly other information, such as information to detect or prevent IP
and security requirements conflicts, which is as yet undetermined.

With this information and definitions of the licenses involved, we believe it is

possible to automatically calculate rights and obligations for individual components

or for the entire system as well as to guide/assess system design and evolution

using an automated environment of the kind that we have previously demonstrated

(Alspaugh, Asuncion, et al., 2009a, 2009b, 2010; Alspaugh, Schacchi, et al., 2010).

G. Security License Analysis

Given a specification of a software system’s architecture, we can associate

security license attributes with the system’s components, connectors, and sub-

system architectures, resulting in a license architecture for the system, and we can

calculate the security rights and obligations for the system’s configuration. Due to

the complexity of license architecture analysis, and the need to re-analyze every

time a component evolves, a component’s security license changes, a component is

substituted, or the system architecture changes, OA integrators really need an

automated license architecture analysis environment. We have developed a

prototype of such an environment for analogous calculations for software copyright

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 26 -
k^s^i=mlpqdo^ar^qb=p`elli=

licenses (Alspaugh, Asuncion, et al., 2009b; Alspaugh, Schacchi, et al., 2010), and

are extending this approach to security licenses.

1. Security Obligation Conflicts

A security obligation can conflict with another obligation, a related right for the

same or nearby components, or with the set of available security rights by requiring

a right that has not been granted. For instance, consider two connected components

C and D with the following security obligations.

(O1) The obligation for component C to have been vetted for the capability to
read and update data in containment vessel T

(O2) The obligation for all components connected to specified component D
to grant it the capability to read and update data in containment vessel T

If C has not been vetted, then these two obligations conflict. This possible

conflict must be taken into consideration in different ways at different development

times:

 at design time, ensuring that it will be possible to vet C;

 at build time, ensuring that the specific implementation of C has been
vetted successfully; and

 possibly at run time as well, confirming that C is certified to have been
vetted, or (if C is dynamically connected at run time) vetting C before
trusting the connection to it.

The second obligation may also conflict with the set of available security

rights, for example if D is connected to component E for which the security right

(R1) to read and update data in containment vessel T using component E is
not available.

The absence of such conflicts does not mean, of course, that the system is

secure, but the presence of conflicts reliably indicates that it is not secure.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 27 -
k^s^i=mlpqdo^ar^qb=p`elli=

2. Rights and Obligations Calculations

The rights available for the entire system (the right to read and update data in

containment vessel T, the right to replace components with other components, the

right to update component security licenses, etc.) are calculated as the intersection

of the sets of security rights available for each component of the system. If a conflict

is found involving the obligations and rights of interacting components, it is possible

for the system architect to consider an alternative scheme (e.g., using one or more

connectors along the paths between the components that act as a security firewall).

This means that the architecture and the automated environment together can

determine what OA design best meets the problem at hand with available software

components. Components with conflicting security licenses do not need to be

arbitrarily excluded, but instead may expand the range of possible architectural

alternatives if the architect seeks such flexibility and choice.

H. Discussion

Our approach to specifying and analyzing the security requirements for a

complex OA system is based on the use of a security license. As noted, a security

license is a new kind of information structure whose purpose is to declare

operational capabilities that express the obligations and rights of users or programs

to access, manipulate, control, update, or evolve data, control signals, and

accessible software system elements. Our proposed security license is influenced by

IP licenses that are employed to specify property control and declared copyright

freedoms/restrictions, such as those for OSS components subject to licenses like the

GPLv2, MPL, LGPL, or others. These IP licenses as information structures often

pre-exist to facilitate their widespread use, dissemination, and common

interpretation. Further, the choice of which IP license to choose or assign to a

software component results from a trade-off analysis typically performed by the

components producers, rather than by the system integrators or consumers as a

way to protect or propagate the obligations and rights to use, evolve, and redistribute

the updated component's open source code.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 28 -
k^s^i=mlpqdo^ar^qb=p`elli=

The security licenses we propose may or not necessarily exist prior to their

specification and assignment to a given OA system. Similarly, we may anticipate or

expect that generic security licenses will emerge and be assigned by software

component producers, as they have for OSS components, though no such security

licenses from producers yet exist. However, one follow-on goal we seek to address

is whether and how best to specify security licenses for different types of software

elements or components so that it becomes possible to semi-automatically specify

the security license for a given component or composed OA system through the

reuse and instantiation of security requirement templates. This idea is somewhat

similar to the license templates and taxonomy that is employed by the Creative

Commons for non-software intellectual property like online art or new media content

(see http://creativecommons.org/licenses/). In this regard, it may be possible to

develop a technique and supporting computational environment whereby system

integrators or consumers can conveniently specify the security requirements they

seek (e.g., fill out online security requirements forms), while the environment

interprets these specifications to generate operational security capabilities that can

guard the entry and exit of data or control information from the appropriate

containment vessel that encapsulates the corresponding system element.

Consequently, this is a topic for further study and investigation.

Next, one might wonder why it is not simply desirable to have maximum

system security under all circumstances. When considering the alternative run-time

system composition variants shown in Figures 5, 6, and 7, it appears that there may

be trade-offs in one layout of security capabilities over another. For example, the

layout in Figure 5 maximizes security by encapsulating each system element within

its own containment vessel. This in turn requires a VM technology of a kind different

from that commonly available (e.g., like VMware), and instead requires a new

lightweight VM technology that can provide security capabilities (e.g., create, read,

update authorizations) for potentially small-scale software elements (e.g., Cshell

inter-application integration or run-time scripts). Similarly, the different security

containment layouts may affect system performance, ease of evolutionary update,

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 29 -
k^s^i=mlpqdo^ar^qb=p`elli=

and associated level of security administration. But these again all represent trade-

offs in the desire to achieve affordable, practical, and evermore robust and testable

secure software component/system capabilities build-time and run-time. Thus, we

take the position that it is better to provide the ability to specify and analyze the

security requirements of different software elements at design-time, as well as to

specify and analyze the security capabilities at build-time and run-time, rather than

the current practice that does not account for system architecture nor license

architecture and is thus inherently vulnerable to attacks that can otherwise be

prevented or detected.

One other topic follows from our approach to semantically modeling and

analyzing OA systems that are subject to software security licenses. More

specifically, how our approach and emerging results might shed light on software

systems whose architectures articulate a software product line.

Accordingly, organizing and developing software product lines (SPLs) relies

on the development and use of explicit software architectures (Bosch, 2000;

Clements & Northrop, 2001). However, the architecture of a secure SPL is not

necessarily a secure OA—there is no requirement for it to be so. Thus, we are

interested in discussing what happens when SPLs may conform to a secure OA, and

to an OA that may be composed from secure SPL components. Three

considerations come to mind.

First, if the SPL is subject to a single homogeneous security software license,

which may often be the case when a single vendor or government contractor has

developed the SPL, then the security license may act to reinforce a vendor lock-in

situation with its customers. One of the motivating factors for OA is the desire to

avoid such lock-in, whether or not the SPL components have open or standards-

compliant APIs.

Second, if an OA system employs a reference architecture much like we have

in the design-time architecture depicted in Figure 3, which is then instantiated into a

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 30 -
k^s^i=mlpqdo^ar^qb=p`elli=

specific software product configuration (as suggested in the build-time architecture

shown in Figure 4), then such a reference or design-time architecture as we have

presented it here effectively defines an SPL consisting of possible different system

instantiations composed from similar components instances (e.g., different but

equivalent Web browsers, word processors, email, calendaring applications,

relational database management systems).

Third, if the SPL is based on an OA that integrates software components from

multiple vendors or OSS components that are subject to heterogeneous security

licenses (i.e., those that may possibly conflict with one another), then we have the

situation analogous to what we have presented in this paper. Thus, secure SPL

concepts are compatible with secure OA systems that are composed from

heterogeneously security licensed components.

I. Conclusion

This paper introduces the concept and initial scheme for systematically

specifying and analyzing the security requirements for complex open architecture

systems. We argue that such requirements should be expressed as operational

capabilities that can be collected and sequenced within a new information structure

we call a security license. Such a license expresses security in terms of capabilities

that provide users or programs with obligations and rights for how they may access

data or control information as well as how they may update or evolve system

elements. Thus, these security license rights and obligations play a key role in how

and why an OA system evolves in its ecosystem of software component producers,

system integrators, and consumers.

We note that changes to the license obligations and rights, whether for control

of intellectual property or software security, across versions of components is a

characteristic of OA systems whose components are subject to different security

requirements or other license restrictions. A structure for modeling software licenses

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 31 -
k^s^i=mlpqdo^ar^qb=p`elli=

and automated support for calculating its rights and obligations are needed in order

to manage an OA system’s evolution in the context of its ecosystem.

We have outlined an approach for achieving these and sketched how they

further the goal of reusing components in developing software-intensive systems.

Much more work remains to be done, but we believe that this approach turns a

vexing problem into one for which workable, as well as robust formal, solutions can

be obtained.

Acknowledgments

This research is supported by grant #N00244-10-1-0038 and #N00244-10-1-

077 from the Acquisition Research Program at the Naval Postgraduate School, and

by grant #0808783 from the U.S. National Science Foundation. No review, approval,

nor endorsement is implied.

References

Alspaugh, T. A., & Anton, A. I. (2008, February). Scenario support for effective
requirements. Information and Software Technology, 50(3), 198–220.

Alspaugh, T. A., Asuncion, H. U., & Scacchi, W. (2009a, May). Analyzing software
licenses in open architecture software systems. In Proceedings of the 2nd
International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS).

Alspaugh, T. A., Asuncion, H. U., & Scacchi, W. (2009b, August 31–September 4).
Intellectual property rights requirements for heterogeneously-licensed
systems. In Proceedings of the 17th IEEE International Requirements
Engineering Conference (RE’09; pp. 24–33).

Alspaugh, T. A., Asuncion, H. U., & Scacchi, W. (2010, May). The challenge of
heterogeneously licensed systems in open architecture software ecosystems.
In Proceedings of the 7th Acquisition Research Symposium. Monterey, CA:
Naval Postgraduate School.

Alspaugh, T. A., Scacchi, W., & Asuncion, H. U. (2010, November). Software
licenses in context: The challenge of heterogeneously-licensed systems.
Journal of the Association for Information Systems, 11(11), 730–755.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 32 -
k^s^i=mlpqdo^ar^qb=p`elli=

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice.
Boston, MA: Addison-Wesley Longman.

Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a
product-line approach. Boston, MA: Addison-Wesley.

Breaux, T. D., & Anton, A. I. (2005). Analyzing goal semantics for rights,
permissions, and obligations. In Proceedings of the 13th IEEE International
Conference on Requirements Engineering (pp. 177–188).

Breaux, T. D., & Anton, A. I. (2008). Analyzing regulatory rules for privacy and
security requirements. IEEE Transactions on Software Engineering, 34(1), 5–
20.

Clements, P., & Northrop, L. (2001). Software product lines: Practices and patterns.
Addison-Wesley Professional.

Falliere, N., Murchu, L. O., & Chien, E. (2011, February). W32.Stuxnet dossier
(Version 1.4). Retrieved from
http://www.symantec.com/content/en/us/enterprise/media/security_response/
whitepapers/w32_stuxnet_dossier.pdf

Feldt, K. (2007). Programming Firefox: Building rich internet applications with XUL.
O’Reilly Media.

Firesmith, D. (2004, January–February). Specifying reusable security requirements.
Journal of Object Technology, 3(1), 61–75.

Fontana, R., Kuhn, B. M., Moglen, E., Norwood, M., Ravicher, D. B., Sandler, K.,
Vasile, J., & Williamson, A. (2008). A legal issues primer for open source and
free software projects. Software Freedom Law Center.

German, D. M., & Hassan, A. E. (2009, May). License integration patterns: Dealing
with licenses mis-matches in component-based development. In Proceedings
of the 28th International Conference on Software Engineering (ICSE ’09).

Hohfeld, W. N. (1913, November). Some fundamental legal conceptions as applied
in judicial reasoning. Yale Law Journal, 23(1), 16–59.

Kuhl, F., Weatherly, R., & Dahmann, J. (1999). Creating computer simulation
systems: An introduction to the high level architecture. Prentice Hall.

Meyers, B. C., & Oberndorf, P. (2001). Managing software acquisition: Open
systems and COTS products. Addison-Wesley Professional.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 33 -
k^s^i=mlpqdo^ar^qb=p`elli=

Nelson, L., & Churchill, E. F. (2006). Repurposing: Techniques for reuse and
integration of interactive systems. In Proceedings of the International
Conference on Information Reuse and Integration (IRI-08; p. 490).

Oreizy, P. (2000). Open architecture software: A flexible approach to decentralized
software evolution (Doctoral thesis). Irvine, CA: University of California, Irvine.

Rosen, L. (2005). Open source licensing: Software freedom and intellectual property
law. Prentice Hall.

Scacchi, W., & Alspaugh, T. A. (2008, May). Emerging issues in the acquisition of
open source software within the U.S. Department of Defense. In Proceedings
of the 5th Annual Acquisition Research Symposium. Monterey, CA: Naval
Postgraduate School.

Yau, S. S., & Chen, Z. (2006). A framework for specifying and managing security
requirements in collaborative systems. In Proceedings of the Third
International Conference on Autonomic and Trusted Computing (ATC 2006;
pp. 500–510).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 34 -

===========================k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 35 -

===========================k^s^i=mlpqdo^ar^qb=p`elli

II. Presenting Software License Conflicts
through Argumentation

Thomas A. Alspaugh
Computer Science Dept.
Georgetown University
Washington, DC, USA

thomas.alspaugh@acm.org

Hazeline U. Asuncion
Computing and Software Systems
University of Washington, Bothell

Bothell, Washington, USA
hazeline@u.washington.edu

Walt Scacchi

Institute for Software Research
University of California, Irvine

Irvine, California, USA
wscacchi@ics.uci.edu

Abstract

Heterogeneously licensed systems pose new challenges to architects and

designers seeking to develop systems with appropriate intellectual property rights

and obligations. In extreme cases, license conflicts may prevent a system’s legal

use. Our previous work showed that rights, obligations, and conflicts can be

calculated. However, architects benefit from fuller information than simply (for

example) a list of conflicts. In this work we demonstrate an approach for presenting

intellectual property results in terms of the arguments supporting them. The network

of argumentation provides not only an explanation of each conclusion, but also a

guide to the tradeoffs available in choosing among design alternatives with different

licensing results. The approach has been integrated into the ArchStudio software

architecture environment. We present an illustrative example of its use.

A. Introduction

An increasing number of development organizations are adopting a strategy

in which software-intensive systems are composed of heterogeneously licensed

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 36 -
k^s^i=mlpqdo^ar^qb=p`elli=

(HtL) components, with different components governed by different software

licenses. The components are either open source software (OSS) or proprietary

software with open application programming interfaces (APIs), and are combined in

an open architecture (OA) in which components with comparable interfaces can be

substituted for each other (Oreizy, 2000). Under this strategy the development

organization becomes an integrator of components largely produced elsewhere,

interconnected to achieve the desired result.

The resulting OA systems can achieve reuse benefits such as reduced costs,

increased reliability, and potentially increased agility in evolving to meet changing

needs. However, rather than a single proprietary license as when acquired from a

proprietary vendor, or a single OSS license as in uniformly licensed OSS projects,

the resulting system typically has no recognized single software license. Instead it

has, strictly speaking, a virtual license (Alspaugh, Asuncion, & Scacchi, 2009)

composed of each component’s rights and obligations for that component under its

governing license. The rights available for the system as a whole are the intersection

of the rights sets for each component. In some cases the licenses may produce

conflicting obligations and this intersection is empty, leaving a system that cannot

legally be used, distributed, or modified. An emerging challenge is to realize the

reuse benefits of HtL systems while managing virtual licenses in order to ensure that

the desired system rights are available for an acceptable set of obligations.

In our previous work (summarized in Section 4) we described and

implemented a novel approach for calculating conflicting obligations, unavailable

rights, and virtual licenses in an architectural design context. Calculation is

necessary because the number of entailments in a typical HtL system is large, the

system’s architecture is constantly evolving, its design-, distribution-, and run-time

architectures are often distinct, component licenses evolve and components are

relicensed, and the consequences of infringement can be substantial. Therefore,

identifying conflicts and virtual licenses through calculation is a substantial boon.

However, we soon realized that explaining them was of even greater value.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 37 -
k^s^i=mlpqdo^ar^qb=p`elli=

We present an approach in which arguments are used to explain the results

of right and obligation calculations. The calculations proceed by elaborating a

directed acyclic graph (dag) of inferences among rights to obligations for entities in

the system architecture. In this work we reimplemented the software that performs

the calculations so that the dag is retained in its entirety as the primary calculation

product, containing within it the obligation conflicts, unavailable rights, and virtual

license for the system under analysis. Then an explanation for a specific result

corresponds to the traversal of a path through the dag, starting at the result in

question and continuing until the question has been answered.

 Conflicting obligations—The traversal branches for each obligation
to show the desired rights, license provisions, and architectural entities
from which that obligation is produced, and at the root of the traversal,
show in what ways the obligations conflict.

 Unavailable rights—For each such right, a traversal identifies the
exclusive copyright right that subsumes the right in question, the
architectural entity to which the right pertains, and why no right in the
entity’s license grants the right in question.

 Virtual license—Traversals show the chains of inference by which
each right and obligation is entailed by the system architecture, the
stated license for each component, and the desired rights for the
system as a whole.

The dag calculation algorithm follows the steps of legal reasoning (formalized

to support automation) by which an informed analyst would reason out the results.

Thus, the traversals follow inference paths that follow (in more detail) the paths by

which an analyst reasons out the same conclusions.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 38 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 1. A Claim, Supported by Grounds, Their Pertinence to the
Claim Justified by a Warrant, Whose Validity is Supported by Backing

(diagram after [14])

B. Related Work

The most influential approach for structuring legal arguments is that of

Toulmin, Rieke, and Janik (1984), who classified the parts of arguments into claims,

grounds, warrants, backing, qualifiers, and rebuttals, in a recursive structure with a

diagrammatic notation outlined in Figure 1. This approach has spread beyond the

area of legal arguments and is used in general rhetoric and computer science.

Toulmin divides arguments into

1. claims asserted to be true;

2. for each claim whose truth is disputed, one or more grounds
supporting it;

3. if it is disputed whether a claim’s grounds suffice for it, then a warrant
stating why the grounds entail the claim; and

4. if the warrant is disputed, then backing supporting it.

If a ground or backing is disputed, then it is made the claim of a lower level

argument constructed in its support. The recursion of arguments continues as long

as grounds or backings are in dispute, or until the original claim is abandoned.

(Qualifiers and rebuttals address the degree of strength of arguments, and are not

used in the present work.)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 39 -
k^s^i=mlpqdo^ar^qb=p`elli=

Hohfeld (1913) sought a theory by which to resolve the imprecise terminology

and ambiguous classifications he found in use for legal relationships. In a seminal

article published in 1913 and cited to the present day, he set forth a system of eight

jural relations intended to express and classify all legal relationships between

people. The first four regulate ordinary actions and are right (may), no-right (cannot),

duty (must), and privilege (need not). Each relation has an opposite relation whose

sense is its opposite, and a correlative relation whose sense is its complement. We

use Hohfeld’s first four jural relations as the basis of our representation of the

enactable, testable provisions of software licenses (Section 4).

There has been much work on analysis of laws in AI over the past few

decades. A widely-cited example is Sergot et al.’s (1986) re-expression of the British

Nationality Act as a Prolog program; the resulting program applied the Act to any

person’s situation and characteristics in order to determine nationality (Sergot et al.,

1986).

A number of researchers have used argumentation to guide decision-making,

notably Haley, Laney, Moffett, and Nuseibeh (2008) who propose an approach for

using satisfaction arguments to evaluate and guide the evolution of security

requirements. Decision choices for which no convincing argument is found are set

aside in favor of choices for which stronger arguments have been identified.

C. Licensing Background

1. Intellectual Property (IP)

An individual can own a tangible thing and have property rights in it, such as

the rights to use it, improve it, sell it or give it away, or prevent others from doing so,

subject to some statutory restrictions. Similarly, an individual can own intellectual

property (IP) of various types and have specific property rights in the intangible

intellectual property, such as the rights to copy, use, change, distribute, or prevent

others from doing so, again subject to some statutory restrictions. Software licenses

are primarily concerned with copyrights. Copyright is defined by Title 17 of the U.S.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 40 -
k^s^i=mlpqdo^ar^qb=p`elli=

Code and by similar law in many other countries. It grants exclusive rights to the

author of an original work in any tangible means of expression; namely the rights to

 reproduce the copyrighted work,

 distribute copies,

 prepare derivative works,

 distribute copies of derivative works, and

 (for certain kinds of work) perform or display it.

Because the rights are exclusive, an author can prevent others from

exercising them, except as allowed by “fair use,” or an author can grant others any

or all of the rights or any part of them; one of the functions of a software license is to

grant such rights and define the conditions under which they are granted.

2. Software Licenses

Traditional proprietary licenses allow a company to retain control of software it

produces and restrict the access and rights that outsiders can have. OSS licenses,

on the other hand, encourage sharing and reuse of software and grant access and

as many rights as possible.

Academic OSS licenses such as the Berkeley Software Distribution (BSD)

license, the Apache Software License, and perl’s Artistic License (Alspaugh, n.d.)

grant nearly all rights and impose few obligations. Typical academic license

obligations are simply to not remove the copyright and license notices.

Reciprocal OSS licenses impose an obligation that distributed modifications

of reciprocally licensed software be freely licensed under the same license.

Examples are the Lesser General Public License (LGPL), Mozilla Public License

(MPL), and Common Public License (Alspaugh, n.d.).

Some reciprocal licenses additionally require that software combined with the

licensed software (for various definitions of “combined”) also be freely licensed

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 41 -
k^s^i=mlpqdo^ar^qb=p`elli=

under the same license. We term such licenses propagating; they are also known as

strong copyleft licenses. Examples are the General Public License versions 2 and 3

(GPLv2, GPLv3; Alspaugh, n.d.).

Some OSS is multiply licensed, or distributed under two or more licenses.

The MySQL database software is distributed either under GPLv2 for OSS projects or

a proprietary license for commercial projects. The Mozilla Disjunctive Tri-License

licenses the core Mozilla components under any of three licenses (MPL, GPL, or

LGPL).

3. Licenses and Software Architectures

Certain classes of architectural features affect the application and

propagation of license provisions. The most common such features are listed below.

A software architecture is composed of components, each of which is a “locus of

computation and state” in a system, and connectors which link them and mediate

interactions between them.

Software source code components—These can be

 standalone programs,

 libraries, frameworks, or middleware,

 inter-application script code such as C shell scripts, or

 intra-application script code, for creating Rich Internet Applications
using domain-specific languages like XUL for the Firefox Web browser
[6] or “mashups”[9].

The distinguishing characteristic of a source code component is that its

source code is available and it can be modified and rebuilt. Each may have its own

explicit license, though often script code connecting programs and data flows has no

stated license unless the script is substantial or proprietary.

Executable components—These components are in binary form, with

source code not available for access, review, modification, or possible redistribution

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 42 -
k^s^i=mlpqdo^ar^qb=p`elli=

(Rosen, 2005). If proprietary, they often cannot be redistributed, and so such

components will be present in the design- and run-time architectures but not in the

distribution-time architecture.

Software services—An appropriate software service can replace a source

code or executable component.

APIs—These are not and cannot be licensed, but connections through APIs

can be used to limit the propagation of some license obligations.

Software connectors—These are software elements providing a standard or

reusable way of communication through common interfaces, such as High Level

Architecture, CORBA, or Enterprise Java Beans. Connectors can also limit the

propagation of some license obligations.

Methods of composition—These include linking as part of a configured

subsystem, dynamic linking, and client-server connections. Methods of composition

affect license obligation propagation, with different methods affecting different

licenses. How and to what extent this occurs have not been resolved in court or in

practice (Determann, 2006; Stoltz, 2005).

Configured system or subsystem architectures—These are software

systems used as atomic components of a larger system. Their internal architecture

may contain subcomponents under several licenses, which may affect the rights and

obligations for the configured (sub)system and the overall system containing it. To

minimize license interaction, a configured system or subsystem architecture may be

surrounded by what we term a license firewall (Alspaugh et al., 2009), namely a

layer of dynamic links, client-server connections, license shims, or other connectors

that block the propagation of obligations.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 43 -
k^s^i=mlpqdo^ar^qb=p`elli=

4. Heuristics for Designing HtL Systems

HtL system designers have developed heuristics to guide architectural design

while avoiding some license conflicts.

First, it is possible to use a reciprocally licensed component through a license

firewall that limits the scope of reciprocal obligations for specific licenses (depending

on how the license provisions are interpreted). Rather than connecting conflicting

components directly through static build-time links, the connection is made through a

dynamic link, client-server protocol, license shim, or run-time plug-in.

A second approach used by a number of large organizations is to avoid using

any components with reciprocal licenses. Even using design heuristics such as

these, keeping track of license rights and obligations across components that are

interconnected in complex OAs quickly becomes cumbersome. Organizations

wishing to follow a “best-of-breed” component selection policy, without regard to

component licenses, face even steeper challenges. Automated support is needed to

manage this multi-component, multi-license complexity.

D. License Rights and Obligations

In our previous work (Alspaugh et al., 2009) we developed an approach for

expressing software licenses that is more formal and less ambiguous than natural

language, and that allows us to calculate rights and obligations for an HtL system

and identify conflicts arising from the rights and obligations of two or more

component’s licenses. Our approach is based on Hohfeld’s (1913) eight fundamental

jural relations, of which we use right (may), duty (must), no-right (must not), and

privilege (need not; see Figure 2). Each relation has a correlative relation, which in

our context relates an obligation to its necessary right:

 if actor A must perform action X, then A requires the correlative right to
perform it, expressed as “A may X;”

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 44 -
k^s^i=mlpqdo^ar^qb=p`elli=

 if actor A must not perform action X, then A requires the correlative
right to not perform it, “A need not X.”

We express rights and obligations as tuples (Figure 3): <actor, modality,

action, object, license> The actor is either the “Licensee” or in a few cases

“Licensor” for all of the enactable, testable provisions of the licenses we have

examined (Alspaugh, Scacchi, & Asuncion, 2010). The modality is may or need not

for a right and must or must not for an obligation. The action is a verb phrase acting

on an object, describing what may, need not, must, or must not be done. The object

is a module of the system or a related artifact such as a source file, the original

version, documentation, and so forth. Typically a license right applies to any of a

class of objects distributed under the license, such as any binary file or any modified

source file; and the right’s obligations will apply to the same object or a related

object, such as the right’s object’s sources or the right’s object’s originals. For this

reason we term rights and obligations as expressed in a license abstract in contrast

to a concrete right or obligation for one specific entity. Some actions are

parameterized by a license as well.

Figure 2. Hohfeld’s Four Basic Relations

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 45 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 3. Metamodel for Software Licenses

Because copyright rights are exclusive to the copyright holder and licensees,

the actions in copyright rights are distinguished from other actions; rights with those

actions are only available through the object’s license. Rights formed from all other

actions are freely and immediately available, unless the object’s license obligations

restrict them.

A license is expressed as a set of rights, each right associated with zero or

more obligations that must be fulfilled to be granted it, and possibly a set of overall

obligations that must be fulfilled for the license as a whole. Figure 4 sketches two

rights from GPL version 2.0 (GPLv2), the first with no obligations and the second

with three corresponding obligations.

The details of the license specification approach are described in our earlier

work (Alspaugh et al., 2009; Alspaugh et al., 2010).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 46 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 4. Some Tuples for the GPLv2 License

E. Applying Licenses to Software

1. Calculating the Inference Dag

In order to obtain a particular desired right r for a specific module or other

entity e, in other words a desired concrete right, one of two cases must hold:

1. r is not subsumed by any of the five copyright rights and does not
conflict with any general obligation of r’s license L. In this case r is
freely available.

2. r is subsumed by an abstract right R of the license, with e likewise
subsumed by R’s object. In this case all R’s obligations O1, O2, . . . ,
on must be fulfilled, with their objects replaced by whatever function of
e they signify in order for r to be granted. These could be e itself, all
sources of e, the original version of e, and so forth. N may be zero, in
which case L immediately grants r.

Figure 5 illustrates one step of the application of a license to obtain a desired

concrete right r. The license of r’s object shows two obligations O1 and O2 of R,

which we apply to r’s object e in order to obtain r’s concrete obligations o1 and o2.

Depending on what kind of object O1 has, o1 could apply to e itself, in which case e

= e'1, or to an entity related to e, or (if L is a propagating license) to another module

linked or otherwise connected to e. Finally, in order to fulfill o1 we must have o1’s

correlative right r'1. The same considerations apply for O2, of course. The heavy

arrow shows the flow of inference from desired concrete right through to required

concrete obligations and correlative rights.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 47 -
k^s^i=mlpqdo^ar^qb=p`elli=

If r'1 (r'2) is immediately available, its branch of the inference is complete. If

not, the process recurses from r'1 (r'2).

The license rights and obligations for an entire system are calculated by

repeating this process for every module of the system. If all modules are under the

same license, analogous rights and obligations are obtained for every module. If the

system is heterogeneously licensed, however, the calculation is much more varied,

and if some of the modules are propagationally licensed then a right for one of those

modules can produce obligations for other modules of the system. Such an

architecture can easily result in license conflicts, as for example when a license

propagates the obligation to be sublicensed under the same license to a proprietary

component whose license forbids sublicensing. In such a case, the calculation will

fail to produce a simultaneously satisfiable collection of obligations, and no rights will

be available for the system as a whole.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 48 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 5. A Step in a Rights/Obligations Inference

Figure 6 shows in Toulmin form a portion of an example inference that

produces a conflict, involving a component e1 obtained under GPLv2 and modified,

linked to a component e2 obtained under the proprietary Corel Transactional

License (CTL; Alspaugh, n.d.). The architectural connection between e1 and e2 is

one that is interpreted for this inference as propagating GPLv2 obligations, such as a

static link. The right to distribute copies of the containing system is desired. In our

prototype implementation (Figure 8) these arguments are presented in outline form,

with the claim as the root of the outline and its grounds and warrant as its subheads,

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 49 -
k^s^i=mlpqdo^ar^qb=p`elli=

to be expanded as desired if further explanation is needed. A typical use would be

the following:

1. Why does the WordProcessor component need to be sublicensed
under GPLv2?

2. It is in the static-linked scope of the GnomeEvolution component; that
component is annotated with the GPLv2 license; and GPLv2 obligates
sublicensing under GPLv2 (GPLv2 x2.2{1.bs1).

3. Why can’t the WordProcessor component be sublicensed under
GPLv2?

4. The WordProcessor component in the architecture has been annotated
with the CTL license, and CTL forbids sublicensing under any license
(CTL x4{1s1w15).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 50 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 6. Toulmin-structured Arguments Supporting (and explaining) a
typical conflict between obligations for a GPLv2 and a proprietary component

2. Explanation by Argumentation

Figure 7 shows the two explanation flows for a conflict between obligations.

Each flow begins at the conflict and explains how one half of the conflicting pair

came to be. The connection between the pair is straightforward because they are

identical except for their modalities which are always must for one and must not for

the other. The flow and the required explanations are analogous for a right-obligation

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 51 -
k^s^i=mlpqdo^ar^qb=p`elli=

conflict, with the right and obligation again identical except for their modalities, which

are always opposites, either may and must not or must and need not.

Figure 7. Divided explanation flow for a conflict between two obligations

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 52 -
k^s^i=mlpqdo^ar^qb=p`elli=

After examining the kinds of information that are available in the vicinity of a

problem (a conflict or unavailable right), we realized that the inferences leading up to

it provide the clearest insight into what the problem signifies and why it is present.

 The chains of inference leading up to the problem constitute precisely
the portion of the calculation relevant to the problem. No other parts of
the calculation—or of the applications of license provisions, determined
by the architecture and its annotations, that the calculation identifies—
affect whether the problem is present or not.

 The inferences place the problem in the context of licenses,
components and their annotations, and architectural configuration —
the context in which a designer using the tool is already working.

 Each chain of inference, followed in reverse, provides an unfolding
explanation for the problem’s presence, which an analyst can explore
as far as it is helpful in providing understanding and insight.

Each step of a chain of inference is a point at which it can be broken—by

replacing a component with one differently licensed, replacing one or more

connectors to firewall off a propagating obligation, replacing a build-time component

with one provided by users at run time, or other design decisions.

3. Automation

The license metamodel, calculation, and an assortment of license

interpretations are implemented in a Java package. The calculation builds the entire

dag, which is then available for presentation in whatever ways are desired. Each

abstract right and obligation in a license interpretation has its provenance in the

license or interpretation for use in explanations. The package supports the addition

and use of new interpretations.

The package is connected into the system design context by its integration

into an ArchStudio 4 plugin (Dashofy et al., 2007). The plugin maps features of

software architectures onto the license architecture abstraction needed for the virtual

license calculation and displays results in the context of the architecture.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 53 -
k^s^i=mlpqdo^ar^qb=p`elli=

The argument grounds drawn from the texts of licenses are implemented

through URLs hyperlinking into our collection of software licenses tagged for

reference with x-{-sentence word numbers (Alspaugh, n.d.). Each URL cites the

sentence or phrase from which a right or obligation arises. Word-level ids allow

references to, for example, #S2.2p1.bs1w11 for the phrase beginning at word 11 of

that sentence.

F. Conclusion

HtL system design and development provide important benefits but impose

new demands difficult to meet using only manual methods and human insight. Our

approach for supporting HtL development and acquisition automates the calculation

of HtL system virtual licenses. We have integrated it into a software architecture tool

so that it can be applied at the point in the development process when the necessary

information is available and the relevant design decisions are made. A key benefit it

provides is the automated calculation of license conflicts, desired but unavailable

rights, and virtual licenses. However, explaining them is of even greater value.

We present a novel approach that presents each conflict in the form of

structured arguments showing why each conflict exists and (by implication) points of

attack for eliminating it. These arguments provide an informative presentation that

brings together all of the available information in a compact, evocative form that is

easier to interpret, act on, and verify.

Acknowledgements

This research was supported by grant #0808783 from the U.S. National

Science Foundation, and grant #N00244-10-1-0077 from the Acquisition Research

Program at the Naval Postgraduate School. No review, approval, or endorsement is

implied.

The authors thank the anonymous reviewers of earlier versions of this paper

for their insightful suggestions.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 54 -
k^s^i=mlpqdo^ar^qb=p`elli=

References

Alspaugh, T. A. (n.d.). OSS (and other) licenses, x/{/sentence/word-numbered.
Retrieved from http://www.thomasalspaugh.org/pub/osl-sps/

Alspaugh, T. A., Asuncion, H. U., & Scacchi, W. (2009). Intellectual property rights
requirements for heterogeneously-licensed systems. In Proceedings of the
17th International Requirements Engineering Conference (RE’09; pp. 24–33).

Alspaugh, T. A., Scacchi, W., & Asuncion, H. U. (2010, November). Software
licenses in context: The challenge of heterogeneously-licensed systems.
Journal of the Association for Information Systems, 11(11), 730–755.

Dashofy, E., Asuncion, H. U., Hendrickson, S. et al. (2007). Archstudio 4: An
architecture-based meta-modeling environment. In Proceedings of the 28th
International Conference on Software Engineering (Companion volume; pp.
67–68).

Determann, L. (2006). Dangerous liasons—Software combinations as derivative
works? Berkeley Technology Law Journal, 21(4).

Feldt, K. (2007). Programming Firefox: Building rich internet applications with XUL.
Sebastopol, CA: O’Reilly Media, Inc.

Haley, C. B., Laney, R., Moffett, J. D., & Nuseibeh, B. (2008). Security requirements
engineering: A framework for representation and analysis. IEEE Transactions
on Software Engineering, 34(1), 133–153.

Hohfeld, W. N. (1913). Some fundamental legal conceptions as applied in judicial
reasoning. Yale Law Journal, 23(1), 16–59.

Nelson, L., & Churchill, E. F. (2006). Repurposing: Techniques for reuse and
integration of interactive systems. In Proceedings of the International
Conference on Information Reuse and Integration (IRI-08; p. 490).

Oreizy, P. (2000). Open architecture software: A flexible approach to decentralized
software evolution (PhD thesis). Irvine, CA: University of California, Irvine.

Rosen, L. (2005). Open source licensing: Software freedom and intellectual property
law. Upper Saddle River, NJ: Prentice Hall.

Sergot, M. J., Sadri, F., et al. (1986, May). The British Nationality Act as a logic
program. Communications of the ACM, 29(5), 370–386.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 55 -
k^s^i=mlpqdo^ar^qb=p`elli=

Stoltz, M. L. (2005). The penguin paradox: How the scope of derivative works in
copyright affects the effectiveness of the GNU GPL. Boston University Law
Review, 85(5), 1439–1477.

Toulmin, S., Rieke, R., & Janik, A. (1984). An introduction to reasoning. New York:
Macmillan.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 56 -

===========================k^s^i=mlpqdo^ar^qb=p`elli

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 57 -

===========================k^s^i=mlpqdo^ar^qb=p`elli

III. Modding as an Open Source Approach to
Extending Computer Game Systems

Walt Scacchi
Institute for Software Research

and
Center for Computer Games and Virtual Worlds

 University of California, Irvine
wscacchi@ics.uci.edu

Abstract

This paper examines what is known so far about the role of open source

software development within the world of game mods and modding practices. Game

modding has become a leading method for developing games by customizing or

creating OSS extensions to game software in general, and to proprietary closed

source software games in particular. What, why, and how OSS and CSS come

together within an application system is the subject for this study. The research

method is observational and qualitative so as to highlight current practices and issues

that can be associated with software engineering and game studies foundations.

Numerous examples of different game mods and modding practices are identified

throughout.

A. Introduction

User modified computer games, hereafter game mods, are a leading form of

user-led innovation in game design and game play experience. But modded games

are not standalone systems because they require the user to have an originally

acquired or licensed copy of the unmodded game software.

Modding, the practice and process of developing game mods, is an approach

to end-user game software engineering (Burnett, Cook, & Rothermel, 2004) that

establishes both social and technical knowledge for how to innovate by wresting

control over game design from their original developers. At least four types of game

mods can be observed: user interface customization, game conversions, machinima,

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 58 -
k^s^i=mlpqdo^ar^qb=p`elli=

and hacking closed game systems. Each supports different kinds of open source

software (OSS) extensions to the base game or game run-time environment. Game

modding tools and support environments that support the creation of such

extensions also merit attention. Furthermore, OSS game extensions are commonly

applied to either proprietary, closed source software (CSS) games, or to OSS

games, but generally more so to CSS games. Why this is so also merits attention.

Subsequently, we conceive of game mods as covering customizations, tailorings,

remixes, or reconfigurations of game embodiments, whether in the form of game

content, software, or hardware denoting our space of interest.

The most direct way to become a game mod developer (a game modder) is

through self-tutoring and self-organizing practices. Modding is a form of learning—

learning how to mod, learning to be a game developer, learning to become a game

content/software developer, learning computer game science outside or inside an

academic setting, and more (El-Nasr & Smith, n.d.; Scacchi, 2004). Modding is also

a practice for learning how to work with others, especially on large, complex

games/mods. Mod team efforts may also self organize around emergent software

development project leaders or “want to be” (WTB) leaders, as seen for example in

the Planeshift (see http://www.planeshift.it/) OSS massively multiplayer online role-

playing game (MMORPG) development and modding project (Scacchi, 2004).

Game mods, modding practices, and modders are in many ways quite similar

to their counterparts in the world of OSS development, even though they often seem

isolated to those unaware of game software development. Modding is increasingly a

part of mainstream technology development culture and practice, especially so for

games, but also for hardware-centered activities like automobile or personal

computer customization. Modders are players of the games they reconfigure, just as

OSS developers are also users of the systems that they develop. There is no

systematic distinction between developers and users in these communities other

than that there are many users/players that may contribute little beyond their usage,

word of mouth they share with others, and their demand for more such systems. At

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 59 -
k^s^i=mlpqdo^ar^qb=p`elli=

OSS portals like SourceForge.net, the domain of “Games” is the second most

popular project category with nearly 42,000 active projects, or 20% of all projects.1

These projects develop either OSS-based games, game engines, or game

development tools/Software Development Kits (SDKs), and all of the top 50 projects

have each logged more than one million downloads. Thus, the intersection of games

and OSS covers a substantial socio-technical plane, as game modding and

traditional OSS development are participatory, user-led modes of system

development that rely on continual replenishment of new participants joining and

migrating through project efforts, as well as new additions or modifications of

content, functionality, and end-user experience (Scacchi, 2002, 2004, 2007).

Modding and OSS projects are in many ways experiments to prototype alternative

visions of what innovative systems might be in the near future, and so both are

widely embraced and practiced primarily as a means for learning about new

technologies, new system capabilities, new working relationships with potentially

unfamiliar teammates from other cultures, and more (Scacchi, 2007).

Consequently, game modding appears to be (a) emerging as a leading

method for developing or customizing game software, (b) primarily reliant on the

development and use of OSS extensions as the ways and means for game

modding, and (c) overlapping a large community of OSS projects that develop

computer game software and tools that has had comparatively little study. As such,

the research questions that follow are why do these conditions exist, how have they

emerged, and how are they put into practice in different game modding efforts.

This paper seeks to examine what is known so far about game mods and

modding practices. The research method in this study is observational and

qualitative. It seeks to snapshot and highlight current practices that can be

1 See http://www.sourceforge.net/softwaremap/index.php, accessed 15 April 2011. The
number one category of projects is for “Development” with more than 65K OSS projects, out of 210K
projects. So OSS Development and OSS Games together represent half of the projects currently
hosted on SourceForge.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 60 -
k^s^i=mlpqdo^ar^qb=p`elli=

associated with software engineering and game studies, as well as how these

practices may be applied in CSS versus OSS game modding. Numerous examples

of different game mods and modding practices are identified throughout in order to

help establish an empirically grounded baseline of observations from which further

studies can build or refute. Furthermore, the four types of game mods and modding

practices identified in this paper have been employed first-hand in game

development projects led or produced by the author. Such observation can

subsequently serve as a basis for further empirical study and technology

development that ties together computer games, OSSD, software engineering, and

game studies (Scacchi, 2002, 2004, 2007, 2010).

B. Related Work

Two domains of research inform the study here: software extension within the

field of software engineering and modding as a cultural practice within game studies.

Each is addressed in turn.

1. Software Extension

Game mods embody different techniques and mechanisms for software

extension. However, the description of game mods and modding is often absent of

its logical roots or connections back to software engineering. As suggested, mods

are extensions to existing game software systems, so it is appropriate to review what

we already know about software extensions and extensibility.

Parnas (1979) provides an early notion of software extension as an

expression of modular software design. Accordingly, modular systems are those

whose components can be added, removed, or updated while satisfying the original

system functional requirements. Such concepts in turn were integrated into software

architectural design language descriptions and configuration management tools

(Narayanaswamy & Scacchi, 1987). However, reliance on explicit software

architecture descriptions is not readily found in either conventional game or mod

development. Hentonnen, Matinlassi, Niemela, and Kanstren (2007) examine how

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 61 -
k^s^i=mlpqdo^ar^qb=p`elli=

software plug-ins support architectural extension, while Leveque, Estublier, and

Vega (2009) investigate how extension mechanisms like views and model-based

systems support extension, also at the architectural level. Last, the modern Web

architecture is itself designed according to principles of extensibility through open

APIs, migration across software versions, network data content/hypertext transfer

protocols, and representational state transfer (Fielding & Taylor, 2002). Mod-friendly

networked multi-player games often take advantage of these capabilities.

Elsewhere, Batory, Johnson, MacDonald, and von Heeder (2002) describe

how domain-specific languages (for scripting) and software product lines support

software extension, and how now such techniques are used in games that are open

for modding. Next, OSS development, as a complementary approach to software

engineering, relies on OSS code and associated online artifacts that are open for

extension through modification and redistribution of their source representations

(Scacchi, 2007). Finally, other techniques to extend the functionality or operation of

an existing CSS system may include unauthorized modifications that might go

beyond what the end-user license agreement might allow, and so appear to fall

outside of what software engineering might anticipate or encourage. These include

extensions via hacking methods like code injection or hooking, whose purpose is to

gain/redirect control of normal program flow through overloading or intercepting

system function calls or provide a hidden layer of interpretation, which allow for “man

in the middle” interventions. Thus, software extensions and extensibility is a

foundational concept in software engineering, as well as foundational to the

development of game mods. However, the logical connections and

common/uncommon legacy of game modding, OSS development, and software

engineering remain under specified, which this paper begins to address.

2. Modding as Cultural Practice

Game modding is a practice for user content creation that creates/networks

not only game mods but game modders. Within anthropological, behavioral, and

sociological studies of computer game play, modding has been studied as an

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 62 -
k^s^i=mlpqdo^ar^qb=p`elli=

emerging cultural practice that mediates both game play and player interaction with

other players (including the game's developers). In some early studies, modding has

been designated as a form of “playbour” whereby player actions to create game

extensions for use by other players is observed as a form of unpaid (or underpaid)

labor that primarily benefits the financial and property interests of game development

corporations or hegemonic publishers (Kücklich, 2005; Postigo, 2007; Yee, 2006).

Game modding also modifies or transforms game play experience, since what

is play and what is experience(d) are culturally situated. Examples of this may

include single player games being modded into multi-player games. Therefore, the

experience of single player versus the game environment is transformed into other

situations including player versus player, multi-player group play, or team versus

team play. Similarly, the modding of games to enable experiences other than

expected game play, like using a modded game for storytelling or film-making

experiences is also a practice of growing interest, with the emergence of a

distinguishable community of gamer-filmmakers who produce machinima (described

in Section 3) as either a literary medium or an art form (Kelland, 2011; Lowood &

Nitsche, 2011; Marino, 2004).

Other studies have observed that user/modders also benefit from modding as

a way to achieve a sense of creative ownership and meaning in the modded games

that they share and play with others (Postigo, 2008; Scacchi, 2002, 2004; Sotamaa,

2010), and that game mods and modding practices become central elements in what

constitutes play with and through games (Taylor, 2009). Finally, as already

observed, OSS project portals like SourceForge host thousands of OSS game

development projects that develop and deploy role-playing games (4,300 projects),

simulation-based games (2,600), board games (2,300), side-scrolling/arcade games

(2,000), turn-taking strategy games (1,700), multi-user dungeons or text-based

adventure/virtual worlds (1,600), first-person shooters (1,600), MMORPG (600) and

more. Thus, development of OSS games and related game development tools can

be recognized as a central element in the cultural world of computer games and

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 63 -
k^s^i=mlpqdo^ar^qb=p`elli=

game development as well as in the world of OSS development (Scacchi, 2002,

2004, 2007).

C. Four Types of Game Mods

At least four types of game mods are realized through OSS development

practices. These include (a) user interface customizations and agents, (b) game

conversions, (c) machinima, and (d) hacking closed source game systems. Each

type of game mod is examined in turn and each is facilitated (or prohibited)

according to its copyright license.

1. User Interface Customizations and Agents

User interfaces to games embody the practice and experience of interfacing

users (game players) to both the game system and the play experience designed by

the game's developers. Game developers act to constrain and govern what users

can do and what kinds of experiences they can realize. Some users in turn seek to

achieve a form of competitive advantage during game play by modding the user

interface software for their game when so enabled by game developers. These

mods acquire or reveal additional information that users believe will help their play

performance and experience. User interface add-ons subsequently act as the

medium through which game development studios support game product

customization, which is a strategy for increasing end-user satisfaction and thus the

likelihood of product success (Burnett et al., 2004).

Three kinds of user interface customizations can be observed. First and most

common, is the player's ability to select, attire, or accessorize a player's in-game

identity. Second, is for players to customize the color palette and representational

framing borders of the their game display within the human-computer interface,

much like what can also be done with Web browsers (e.g, Firefox 4 “personas” and

“themes”) and other end-user software applications. Third, are user interface add-on

modules that modify the player's in-game information management dashboard, but

do not modify the underlying game play rules or functions. These add-ons provide

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 64 -
k^s^i=mlpqdo^ar^qb=p`elli=

additional information about game play state that may enhance the game play

experience as well as increase a player's sense of immersion or omniscience within

the game world through perceptual expansion. This in turn enables awareness of

game events not visible in the player's pre-existing in-game view. Furthermore,

some add-on facilities (e.g., those available with the proprietary World of Warcraft

MMORPG, scripted in the LUA language) accommodate the creation of automated

agent scripts that can read/parse data streamed to the UI within an existing or other

add-on dashboard component and then provide some additional value-added play

experience, such as sending out messages or status reports to other players

automatically. Such add-on agents modify or reconfigure the end-user play

experience rather than the core functionality or play mechanics available to all of the

game's other players. Consequently, the first two kinds of customizations result from

meta-data selections within parametric system functions, whereas the third

represents a traditional kind of user-created modular extension; one that does not

affect the pre-existing game's functional requirements, nor one included in the

operational source code base during subsequent system builds or releases, unless

the extension does alter the software's requirements (e.g., by introducing a new

security vulnerability or exploit that must be subsequently prevented).

2. Game Conversions

Game conversion mods are perhaps the most common form of game mods.

Most such conversions are partial, in that they add or modify (a) in-game characters

including user-controlled character appearance or capabilities, opponent bots, cheat

bots, and non-player characters, (b) play objects like weapons, potions, spells, and

other resources, (c) play levels, zones, maps, terrains, or landscapes, (d) game

rules, or (e) play mechanics. Some more ambitious modders go as far as to

accomplish (f) total conversions that create entirely new games from existing games

of a kind not easily determined from the original game. For example, one of the most

widely distributed and played total game conversions is the Counter-Strike (CS) mod

of the Half-Life (HL) first-person action game from Valve Software. As the success of

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 65 -
k^s^i=mlpqdo^ar^qb=p`elli=

the CS mod gave rise to millions of players preferring to play the mod over the

original HL game, other modders began to access the CS mod to further convert in

part or full, to the point that Valve Software modified its game development and

distribution business model to embrace game modding as part of the game play

experience that is available to players who acquire a licensed copy of the HL product

family. Valve has since marketed a number of CS variants that have sold over 10

million copies as of 2008; thus, denoting the most successful game conversion mod,

as well as the most lucrative in terms of subsequent retail sales derived from a game

mod.

Another example is found in games converted to serve a purpose other than

entertainment, such as the development and use of games for science, technology,

and engineering applications. For instance, the FabLab game (Scacchi, 2010) is a

conversion of the Unreal Tournament 2007 retail game from a first-person shooter to

a simulator for training semiconductor manufacturing technicians in diagnosing and

treating potentially hazardous materials spills in a cleanroom environment. This

conversion was not readily anticipated by knowledge of the Unreal games or

underlying game engine, although it maintains operational compatibility with the

Unreal game itself. Therefore, game conversions can re-purpose the look, feel, and

intent of a game across application domains, while maintaining a common software

product line (Batory et al., 2002).

Finally, it is common practice that the underlying game engine has one set of

license terms and conditions to protect original work (e.g., no redistribution), while

game mods can have a different set of terms and conditions as a derived work (e.g.,

redistribution allowed only for a game mod, but not for sale). In this regard, software

licenses embody the business model that the game development studio or publisher

seeks to embrace, rather than just a set of property rights and constraints. For

example, in Aion, an MMORPG from the South Korean game studio NCSoft, no user

created mods or user interface add-ons are allowed. Attempting to incorporate such

changes would conflict with its end-user license agreement (EULA) and

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 66 -
k^s^i=mlpqdo^ar^qb=p`elli=

subsequently put such user-modders at risk of losing their access to networked Aion

multi-player game play. In contrast, the MMORPG World of Warcraft (WoW) allows

for UI customization mods and add-ons only, but no other game conversions, no

reverse engineering of the game engine, and no activity intended to bypass WoW's

encryption mechanisms. Additionally, in one more variation, for games like Unreal

Tournament, Half-Life, NeverWinterNights, Civilization, and many others, the EULAs

encourage modding and the free redistribution of mods without fee to others who

must have a licensed copy of the proprietary CSS game, but do not allow reverse

engineering or redistribution of the CSS game engine required to run the OSS mods.

This restriction in turn helps game companies realize the benefit of increased game

sales by players who want to play with known mods rather than with the un-modded

game as sold at retail. Thus, mods help improve games’ software sales, revenue,

and profits for the game development studio, publisher, and retailer as well as

enable new modes of game play, learning, and skill development for game modders.

3. Machinima

Machinima can be viewed as the product of modding efforts that intend to

modify the visual replay of game usage sessions. Machinima employ computer

games as their creative media, such that these new media are mobilized for some

other purpose (e.g., creating online cinema or interactive art exhibitions). Machinima

focuses attention to playing and replaying a game for the purpose of storytelling,

movie making, or retelling of daunting or high efficiency game play/usage

experiences (Lowood & Nitsche, 2011; Marino, 2004). Machinima is a form of

modding the experience of playing a specific game by recording its visual play

session history so as to achieve some other ends beyond the enjoyment (or

frustration) of game play. These play-session histories can then be further modded

via video editing or remixing with other media (e.g., adding music) to better enable

cinematic storytelling or creative performance documentation. Machinima is a kind of

play/usage history process re-enactment (cf. Scacchi, 1998), whose purpose may be

documentary (replaying what the player saw or experienced during a play session)

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 67 -
k^s^i=mlpqdo^ar^qb=p`elli=

or cinematic (creatively steering a play session so as to manifest observable play

process enactments that can be edited and remixed off-line to visually tell a story).

Thus, machinima mods are a kind of extension of the game software use experience

that is not bound to the architecture of the underlying game software system, except

for how the game facilitates a user's ability to structure and manipulate emergent

game play to realize a desired play process enactment history.

4. Hacking Closed Game Systems

Hacking a closed game system is a practice whose purpose oftentimes

seems to be in direct challenge to the authority of commercial game developers that

represent large, global corporate interests. Hacking proprietary game software is

often focused not so much on how to improve competitive advantage in multi-player

game play, but instead is focused on expanding the range of experiences that users

may encounter through use of alternative technologies (Huang, 2003; Scacchi,

2004). For example, Huang's (2003) study instructs readers in the practice of

“reverse engineering” as a hacking strategy to understand both how a game platform

was designed and how it operates in fine detail. This in turn enables reconfiguration

of new innovative modifications or original platform designs, such as installing and

running a Linux operating system (instead of Microsoft's proprietary CSS offering).

Although many game developers seek to protect their intellectual property (IP) from

reverse engineering through end-user license agreements (EULAs), whose terms

attempt to prohibit such action under threat of legal action, reverse engineering is

not legally prohibited. Consequently, the practice of modding closed game

consoles/systems is often less focused on enabling players to achieve competitive

advantage when playing retail computer games, but instead may encourage those

few so inclined for how to understand and ultimately create computing innovations

through reverse engineering or other modifications.

Closed game system modding is a style of software extension used by game

modders who are willing to forego the “protections” and quality assurances that

closed game system developers provide, in order to experience the liberty, skill,

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 68 -
k^s^i=mlpqdo^ar^qb=p`elli=

knowledge acquisition, conceptual appropriation (“owned”), and potential to innovate

that mastery of reverse engineering affords. Consequently, players/modders who

are willing to take responsibility for their actions (and not seek to defraud game

producers due to false product warranty claims or copyright infringement), can enjoy

the freedom to learn how their gaming systems work in intimate detail and potentially

learn about game system innovation through discovery and reinvention with the

support of others who are like-minded (cf. Scacchi, 2004). Proprietary game

development studios may sometimes allow for such mod-based infringement of their

games. For example, the team of modders behind the hacking and conversion of the

single-player CSS game, Grand Theft Auto, have produced an OSS (now GPL'd)

game mod using code injection and hooking cheating methods to realize a

networked multi-player variant called Multi Theft Auto, that Rockstar Games has

chosen not to prosecute for potential EULA violation, but instead to embrace as GTA

fan culture (Wen, 2011). Nonetheless, large corporate interests may assert that their

IP rights allow them to install CSS root kits that collect potentially private information,

or that prevent the reactivation of previously available OSS (e.g., the Linux Kernel on

the Sony PS3 game console2) that game system hackers seek to undo.

Finally, games are one of the most commonly modified types of proprietary

CSS that are transformed into “pirated games” that are “illegally downloaded.” Such

game modding practices are focused on engaging a kind of meta-game that involves

hacking into and modding game IP from closed to (more) open. Thus game piracy

has become recognized as a collective, decentralized, and placeless endeavor (i.e.,

not a physical organization) that relies on torrent servers as its underground

distribution venue for pirated game software. As recent surveys of torrent-based

downloads reveal, in 2008 the top 10 pirated games represented about 9 million

downloads, whereas in 2009 the top 5 pirated games represented more than 13

million downloads, and in 2010 the top 5 pirated games approached 20 million, all

2 For details, see http://en.wikipedia.org/wiki/George_Hotz#Hacking_the_PlayStation_3

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 69 -
k^s^i=mlpqdo^ar^qb=p`elli=

suggesting a substantial growth in interest in and access to such modded game

products.3 Thus, we should not be surprised by the recent efforts of game system

hackers that continue to demonstrate the vulnerabilities of different hardware and

software-based techniques to encrypt and secure closed game systems from would

be hackers. However, it is also very instructive to learn from these exploits how

difficult it is to engineer truly secure software systems, whether or not such systems

are games or some other type of application or package.

D. Game Modding Software Tools and Support

Games are most often modded with tools providing access to unencrypted

representations of game software or game platforms. Such a representation is

accessed and extended via a domain-specific (scripting) language. Although it might

seem the case that game vendors would seek to discourage users from acquiring

such tools, a widespread contrary pattern is observed.

Game system developers are increasingly offering software tools for

modifying the games they create or distribute as a way to increase game sales and

market share. Game/domain-specific Software Development Kits (SDKs) provided to

users by game development studios represent a contemporary business strategy for

engaging users to help lead product innovation from outside the studio. Once Id

Software, maker of the DOOM and Quake game software product line, and Epic

Games, maker of the Unreal software game product line, started to provide

prospective game players/modders with software tools that would allow them to edit

game content, play mechanics, rules, or other functionality, other competing game

development studios were pressured to make similar offerings or face a possible

competitive disadvantage in the marketplace. However, the CSS versions of these

3 For 2008, see http://torrentfreak.com/top-10-most-pirated-games-of-2008-081204/

 For 2009, see http://torrentfreak.com/the-most-pirated-games-of-2009-091227/

 For 2010, see http://torrentfreak.com/call-of-duty-black-ops-most-pirated-game-of-2010-101228/

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 70 -
k^s^i=mlpqdo^ar^qb=p`elli=

tools do not provide access to the underlying source code that embodies the

proprietary game engine—a large software program infrastructure that coordinates

computer graphics, user interface controls, networking, game audio, access to

middleware libraries for game physics, and so forth. However, the complexity and

capabilities of such a tool suite mean that any one person, or better said, any game

development or modding team, can now access modding tools or SDKs to build

commercial quality CSS games through OSS extensions. However, mastering these

tools appears to be an undertaking likely to be of interest only to highly committed

game developers who are self-supported or self-organized.

In contrast to game modding platforms provided by game development

studios, there are also alternatives provided by the end-user community. One

approach can be seen with facilities provided in meta-mods like Garry's Mod or the

AMX Mod X mod-making package. Modders can use these packages to construct a

variety of plug-ins that provide for the development of in-game contraptions as game

UI agents or user created art works, or to otherwise create comic books, program

game conversions, and other kinds of user created content. However, both

packages require that you own a licensed CSS game like Counter-Strike: Source,

Half-Life2 or Day of Defeat: Source from Valve Software.

A different approach to end-user game development platforms can be found

arising from OSS games and game engines. The DOOM and Quake games and

game engines were released as free software subject to the GPL once they were

seen by Id Software as having reached the end of their retail product cycle.

Thousands of games/engines, as already observed, have been developed and

released for download. Some started from the OSS that was previously the CSS

platform of the original games. However, the content assets (e.g., in-game artwork)

for many of these CSS- then-OSS games are not covered by the GPL, and so user-

developers must still acquire a licensed copy of the original CSS game if its content

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 71 -
k^s^i=mlpqdo^ar^qb=p`elli=

is to be reused in some way.4 Nonetheless, some variants of the user-created GPL'd

games now feature their own content that is limited/protected by Creative Commons

licenses.

E. Opportunities and Constraints for Modding

Game modding demonstrates the practical value of software extension as a

user-friendly approach to customizing software. Such software can extend games

open to modding into diverse product lines that flourish through reliance on domain-

specific game scripting languages and integrated SDKs. Modding also demonstrates

the success of end-users learning how to extend software to create custom user

interface add-ons, system conversions, and replayable system usage videos as well

as to discover security vulnerabilities. Therefore game modding represents a viable

form of end-user engineering of complex software that may be transferable to other

domains.

Modding is a form of OSS-enabled collaboration. It is collaboration at a

distance, where the collaborators, including the game developers and game users,

are distant in space and time from each other yet they can interact in an open but

implicitly coordinated manner through software extensions. Comparatively little

explicit coordination arises, except when CSS game developers seek to embrace

and encourage the creation of OSS game mods that rely on the proprietary CSS

game engine (and also SDK) as a way to grow market share and mid share for the

proprietary engine as a viable strategy for entry into the game industry.

However, mods are vulnerable to evolutionary system version updates that

can break the functionality or interface on which the mod depends. This can be

viewed as the result of inadequate software system design practice, such that

existing system modularization did not adequately account for software extensions

that end-users seek, or else the original developer wanted to explicitly prohibit end-

4 For example, see http://assault.cubers.net/docs/license.html , accessed 13 April 2011.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 72 -
k^s^i=mlpqdo^ar^qb=p`elli=

users from making modifications that transform game play mechanics/rules or

unintentionally allow for modification or misappropriation of copy-protected code or

media assets.

Last, one of the key constraints on game modding in particular, and software

extension in general, are the rights and obligations that are expressed in the original

software EULA. Mods tend to be licensed using OSS or freeware licenses that allow

for access, study, modification, and redistribution rather than using free software

licenses (e.g., GPLv2 or GPLv3). Software extensions that might be subject to a

reciprocal GPL-style license require that the base/original software system

incorporate an explicit software architectural design that requires the propagation of

reciprocal rights across an open interface, except through an LGPL software shim

(Alspaugh, Asuncion, & Scacchi, 2009). Otherwise, the scope of effectiveness and

copyright protections of either free or non-free software (or related media assets)

cannot be readily determined, and thus may be subject to copyright infringement or

licenses non-compliance allegations. They may also be treated as social

transgressions within a community of modders whose perceived ownership of the

game mods demands the respect and honor of a virtual license that may or may not

be legally valid (Alspaugh, Scacchi, & Asuncion, 2010). As the OSS community has

long recognized, software rights and freedoms are expressed through IP licenses

that ensure whether or not a person has the right to access, study, modify, and

redistribute the modified software as long as the obligation to include a free software

license is included that restates these rights in unalterable form, is included with the

OSS code and its modified distributions.

F. Conclusions

Modding is emerging as a viable approach for mixing proprietary CSS

systems with OSS extensions. The result is modded systems that provide the

benefits of OSSD to developers of proprietary CSS systems and to end-users who

want additional functionality of their own creation or from others they trust and seek

to interact with through game play.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 73 -
k^s^i=mlpqdo^ar^qb=p`elli=

In contrast, modding is not so good for protecting software and media/content

copyrights. Modding tests the limits of software/IP copyright practices. Some

modders want to self-determine what copy/modding rights they have or not, and

sometimes they act in ways that treat non-free software and related media as if it

were free software. Who owns what, and which copy rights or obligations apply to

that which is modded, are core socio-technical issues when engaging in modding.

This study helps to demonstrate that game modding is becoming a leading

method for developing or customizing game software, whether based on proprietary

CSS or OSS game systems. OSS-based software extensions are the leading ways

and means for modding game-based user interfaces, for converting games from one

style/genre to another, for recording game play sessions for cinematic production

and replay, and for hacking closed source game systems. Finally, the development

of computer game software and tools itself represents a large community of OSS

projects that has had comparatively little study, and thus merits further attention as

its own cultural world as well as one for OSS development. This last consideration

may be important because other empirical studies of OSS development that rely on

data from SourceForge will increasingly include OSS game projects within large

project samples. Therefore, this study has begun to address why and how these

conditions have emerged and how they are put into practice in different game

modding efforts. Future study should also consider whether and how modding might

be applied and adopted in other application domains where CSS can be extended

through OSS mods.

Acknowledgments

The research described in this paper has been supported by grants #0808783

and #1041918 from the National Science Foundation, and grant #N00244-10-1-0077

from the Naval Postgraduate School. No review, approval, or endorsement is

implied. The anonymous reviewers also provided helpful suggestions for improving

this paper.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 74 -
k^s^i=mlpqdo^ar^qb=p`elli=

References

Alspaugh, T. A., Asuncion, H. A., & Scacchi, W. (2009, September). Intellectual
property rights requirements for heterogeneously licensed systems. In
Proceedings of the 17th International Conference on Requirements
Engineering (RE09; pp. 24–23). Atlanta, GA. Retrieved from
http://www.ics.uci.edu/~wscacchi/Papers/New/Alspaugh-Asuncion-Scacchi-
RE09.pdf

Alspaugh, T. A., Scacchi, W., & Asuncion, H. A. (2010, November). Software licenses
in context: The challenge of heterogeneously licensed systems. Journal of the
Association for Information Systems, 11(11), 730–755. Retrieved from
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-Asuncion-
JAIS.pdf

Batory, D., Johnson, C., MacDonald, B., & von Heeder, D. (2002). Achieving
extensibility through product lines and domain specific languages: A case
study. ACM Trans. Software Engineering and Methodology, 11(2), 191–214.

Burnett, M., Cook, C., & Rothermel, G. (2004). End-user software engineering.
Communications ACM, 47(9), 53–58.

El-Nasr, M. S., & Smith, B. K. (n.d.). Learning through game modding. ACM
Computers in Entertainment, 4(1), Article 3B.

Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern web
architecture. ACM Trans. Internet Technology, 2(2), 115–150.

Huang, A. (2003). Hacking the Xbox: An introduction to reverse engineering. San
Francisco, CA: No Starch Press.

Henttonen, K., Matinlassi, M., Niemela, E., & Kanstren, T. (2007). Integrability and
extensibility evaluation in software architectural models—A case study. The
Open Software Engineering Journal, 1(1), 1–20.

Kelland, M. (2011). From game mod to low-budget film: The evolution of machinima.
In H. Lowood & M. Nitsche (Eds.), The Machinima Reader (pp. 23–36).
Cambridge, MA: MIT Press.

Kücklich, J. (2005). Precarious playbour: Modders and the digital games industry.
Fiberculture, 5. Retrieved from
http://journal.fibreculture.org/issue5/kucklich.html

Leveque, T., Estublier, J., & Vega, G. (2009). Extensibility and modularity for model-
driven engineering environments. In Proceedings of the 16th IEEE Conference
on Engineering Computer-Based Systems (ECBS 2009; pp. 305–314).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 75 -
k^s^i=mlpqdo^ar^qb=p`elli=

Lowood, H., & Nitsche, M. (Eds.). (2011). The machinima reader. Cambridge, MA:
MIT Press.

Marino, P. (2004). 3D game-based filmmaking: The art of machinima. Scottsdale,
AZ: Paraglyph Press.

Narayanaswamy, K., & Scacchi, W. (1987). Maintaining evolving configurations of
large software systems. IEEE Trans. Software Engineering, SE-13(3), 324–
334.

Parnas, D.L. (1979). Designing software for ease of extension and contraction. IEEE
Trans. Software Engineering, SE-5(2), 128–138.

Postigo, H. (2007). Of mods and modders: Chasing down the value of fan–based
digital game modifications. Games and Culture, 2(4), 300–313.

Postigo, H. (2008). Video game appropriation through modifications: Attitudes
concerning intellectual property among modders and fans. Convergence,
14(1), 59–74.

Scacchi, W. (1998). Modeling, integrating, and enacting complex organizational
processes. In K. Carley, L. Gasser, & M. Prietula (Eds.), Simulating
organizations: Computational models of institutions and groups (pp. 153–
168). Cambridge, MA: MIT Press.

Scacchi, W. (2002, February). Understanding the requirements for developing open
source software. IEE Proceedings—Software Engineering, 149(1), 24–39.
Revised version in K, Lyytinen, P. Loucopoulos, J. Mylopoulos, and W.
Robinson (Eds.), Design Requirements Engineering: A Ten-Year Perspective,
LNBIP 14, Springer-Verlag, 467-494, 2009.

Scacchi, W. (2004, January/February). Free/open source software development
practices in the game community. IEEE Software, 21(1), 59–67.

Scacchi, W. (2007, September). Free/open source software development: Recent
research results and emerging opportunities. In Proceedings of the European
Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (pp. 459–468). Dubrovnik, Croatia.

Scacchi, W. (2010). Game-based virtual worlds as decentralized virtual activity
systems. In W. S. Bainbridge (Ed.), Online worlds: Convergence of the real
and the virtual (pp. 225–236). New York: Springer.

Sotamaa, O. (2010). When the game is not enough: Motivations and practices
among computer game modding culture. Games and Culture, 5(3), 239–255.

Taylor, T. L., (2009). The assemblage of play. Games and Culture, 4(4), 331–339.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 76 -
k^s^i=mlpqdo^ar^qb=p`elli=

Wen, H. (2005, May). Multi theft auto: Hacking multi-player into Grand Theft Auto
with open source. OSDir. Retrieved from http://osdir.com/Article4775.phtml.
Also see http://www.mtavc.com/ and
http://en.wikipedia.org/wiki/Multi_Theft_Auto.

Yee, N. (2006). The labor of fun: How video games blur the boundaries of work and
play. Games and Culture, 1(1), 68–71.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 77 -

===========================k^s^i=mlpqdo^ar^qb=p`elli

IV. Modding as a Basis for Developing Game
Systems

Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

wscacchi@ics.uci.edu

Abstract

This paper seeks to briefly examine what is known so far about game mods

and modding practices. Game modding has become a leading method for

developing games by customizing extensions to game software. The research

method in this study is observational and qualitative, so as to highlight current

practices and issues that can be associated with software engineering foundations.

Numerous examples of different game mods and modding practices are identified

throughout.

Categories and Subject Descriptors

D.2 [Software Engineering]: software development, software architecture, design
methodology

General Terms

Design, Human Factors.

Keywords: Computer games, software extension, game modding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
GAS’11, May, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0578-5/11/05…$10.00.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 78 -
k^s^i=mlpqdo^ar^qb=p`elli=

A. Introduction

User modified computer games, hereafter game mods, are a leading form of

user-led innovation in game design and game play experience. But modded games

are not new, clean-sheet standalone systems, as they require the user to have an

originally acquired or authorized copy of the unmodded game.

Modding, the practice and process of developing game mods, is typically a

“Do It Yourself” (DIY) approach to end-user game software engineering (Burnett,

Cook, & Rothermel, 2004) that can establish both social and technical knowledge for

how to innovate by wresting control over game design from their original developers.

At least four types of game mods can be observed: user interface customization,

game conversions, machinima, and hacking closed game systems. Each enables

different kinds of extension to the base game or game run-time environment. Game

modding tools and support environments that support the creation of such

extensions also merit attention. Subsequently, we conceive of game mods as

covering customizations, tailorings, and remixes—that is, software extensions—of

game embodiments, whether in the form of game content, software, or hardware

denoting our space of interest.

The most direct way to become a game modder is through self-tutoring and

self-organizing practices. Modding is a form of learning—learning how to mod,

learning to be a game developer, learning to become a game content/software

developer, learning computer game science outside or inside an academic setting,

and more (El-Nasr & Smith, n.d.). Modding is also a practice for learning how to

work with others, especially on large, complex games/mods. Mod team efforts may

also self organize around emergent software development project leaders or “want

to be” (WTB) leaders, as seen for example in the Planeshift open source MMOG

development/modding project (Scacchi, 2004).

Game mods, modding practices, and modders are in many ways quite similar

to their counterparts in the world of free/open source software development

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 79 -
k^s^i=mlpqdo^ar^qb=p`elli=

(FOSSD). Modding is to games, like FOSSD is to software—they are increasingly

becoming a part of mainstream technology development culture and practice.

Modders are players of the games they construct, just like FOSS developers are

also users of the systems they develop. There is no systematic distinction between

developers and users in these communities, other than that there are users/players

that may contribute little beyond their usage, word of mouth they share with others,

and their demand for more such systems. FOSSD portals like SourceForge.com, as

of January 2011, indicate that the domain of “games” appears as the third most

popular project category with over 23,000 active projects. These projects develop

either FOSS-based games, game engines, or game tools/Software Development

Kits (SDKs), and all of the top 50 projects each have logged more than 1 million

downloads. Thus, the intersection of games and FOSS covers a substantial social

and technological plane, as both modding and FOSS development are participatory,

user-led modes of system development that rely on the continual replenishment of

new participants joining and migrating through project efforts as well as new

additions or modifications of content, functionality, and end-user experience

(Scacchi, 2002, 2004, 2007). Modding and FOSSD projects are in many ways

experiments to prototype alternative visions of what innovative systems might be in

the near future, and so both are widely embraced and practiced primarily as a

means for learning about new technologies, new system capabilities, new working

relationships with potentially unfamiliar teammates from other cultures, and more (cf.

Scacchi, 2007).

Consequently, game modding can be recognized as a leading method for

developing or customizing game software. And software extensions are the leading

ways and means for game modding.

This paper seeks to briefly examine what is known so far about game mods

and modding practices. The research method in this study is observational and

qualitative so as to highlight current practices and issues that can be associated with

software engineering foundations. Numerous examples of different game mods and

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 80 -
k^s^i=mlpqdo^ar^qb=p`elli=

modding practices are identified throughout to help distinguish empirically grounded

observation from conjecture. All of the types of game mods and modding practices

identified in this paper have been employed first-hand by game development

projects led or produced by the author. Such observation has subsequently served

as a basis for further empirical study and technology development that ties together

computer games and software engineering (Scacchi, 2002, 2004, 2007).

B. Software Extension

Game mods embody different techniques and mechanisms for software

extension. However, the description of game mods and modding is often absent of

its logical roots or connections back to software engineering. As suggested, mods

are extensions to existing game software systems, so it is appropriate to review what

we already know about software extensions and extensibility.

Parnas (1979) provides an early notion of software extension as an

expression of modular software design. Accordingly, modular systems are those

whose components can be added, removed, or updated while satisfying the core

system functional requirements. Such concepts in turn were integrated into software

architectural design language descriptions and configuration management tools

(Narayanaswamy & Scacchi, 1987). However, reliance on software architecture

descriptions is not readily found in either conventional game or mod development.

Hentonnen, Matinlassi, Niemela, and Kanstren (2007) examine how software plug-

ins support architectural extension, while Leveque, Estublier, and Vega (2009)

investigate how extension mechanisms like views and model-based systems support

extension also at the architectural level. Last, the modern Web architecture is itself

designed according to principles of extensibility through open interfaces, migration

across software versions, network data content/hypertext transfer protocols, and

representational state transfer (Fielding & Taylor, 2002). Mod-friendly networked

multi-player games appear to take advantage of these capabilities.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 81 -
k^s^i=mlpqdo^ar^qb=p`elli=

Elsewhere, Batory, Johnson, MacDonald, and von Heeder (2002) describe

how domain-specific (scripting) languages and software product lines provide

support software extension, and it now seems clear that such techniques are

commonly used in games that are open for modding. Finally, FOSSD has become

another approach to extensible software engineering in practice (Scacchi, 2007).

Therefore, software extensions and extensibility is a foundational concept in

software engineering, and thus to no surprise, also foundational to the development

of game mods. However, the logical connections and common/uncommon legacy

remain under specified, which this paper seeks to address and update.

C. Four Types of Game Mods

1. User Interface Customizations

User interfaces to games embody the practice and experience of interfacing

users (game players) to the game system and play experience designed by game

developers. Game developers act to constrain and govern what users can do, and

what kinds of experiences they can realize. Some users in turn seek to achieve

some competitive advantage during game play by modding the user interface

software for their game, when so enabled by game developers, to acquire or reveal

additional information that the users believe will help their play performance and

experience. User interface add-ons subsequently act as the medium through which

game development studios support game product customization as a strategy for

increasing the likelihood of product success through end-user satisfaction (Burnett et

al., 2004)

Three kinds of user interface customizations can be observed. First and most

common, is the player's ability to select, attire, or accessorize a player's in-game

identity. Second, is for players to customize the color palette and representational

framing borders of the their game display within the human-computer interface,

much like what can also be done with Web browsers and other end-user software

applications. Third, are user interface add-on modules that modify the player's in-

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 82 -
k^s^i=mlpqdo^ar^qb=p`elli=

game information management dashboard and that do not modify game play rules

or functions. These add-ons provide additional information about game play or game

state that may enhance the game play experience, as well as increase a player's

sense of immersion or omniscience within the game world through sensory or

perceptual expansion. This in turn enables awareness of game events not visible in

the player's current in-game view. Consequently, the first two kinds of

customizations result from meta-data selections within parametric system functions,

whereas the third represents a traditional kind of modular extension that does not

affect the pre-existing game's functional requirements.

2. Game Conversions

Game conversion mods are perhaps the most common form of game mods.

Most such conversions are partial, in that they add or modify (a) in-game characters

including user-controlled character appearance or capabilities, opponent bots, cheat

bots, and non-player characters, (b) play objects like weapons, potions, spells, and

other resources, (c) play levels, zones, maps, terrains, or landscapes, (d) game

rules, or (e) play mechanics. Some more ambitious modders go as far as to

accomplish (f) total conversions that create entirely new games from existing games

of a kind that are not easily determined from the originating game. For example, one

of the most widely distributed and played total game conversions is the Counter-

Strike (CS) mod of the Half-Life (HL) first-person action game from Valve Software.

The success of the CS mod gave rise to millions of players preferring to play the

mod over the original HL game, then other modders began to access the CS mod to

further convert in part or full. Valve Software subsequently modified its game

development and distribution business model to embrace game modding as part of

the game play experience that is available to players who acquire a licensed copy of

the HL product family. Valve has since marketed a number of CS variants that have

sold over 10 million copies as of 2008, thus denoting the most successful game

conversion mod, as well as the most lucrative in terms of subsequent retail sales

derived from a game mod.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 83 -
k^s^i=mlpqdo^ar^qb=p`elli=

Another example is found in games converted to serve a purpose other than

entertainment, such as the development and use of games for science, technology,

and engineering applications. For instance, the FabLab game (Scacchi, 2010) is a

conversion of the Unreal Tournament 2007 retail game from a first-person action

shooter to a simulator for training semiconductor manufacturing technicians in

diagnosing and treating potentially hazardous materials spills in a cleanroom

environment. However, this conversion is not readily anticipated by knowledge of the

Unreal games or underlying game engine, though it maintains operational

compatibility with the Unreal game itself. Thus, game conversions can repurpose the

look, feel, and intent of a game across application domains, while maintaining a

common software product line (cf. Batory et al., 2002).

Finally, it is common practice that the underlying game engine has one set of

license terms and conditions to protect original work (e.g., no redistribution),

whereas game mods can have a different set of terms and conditions from a derived

work (e.g., redistribution allowed only for a game mod, but not for sale). In this

regard, software licenses embody the business model that the game development

studio or publisher seeks to embrace rather than just a set of property rights and

constraints. For example, in Aion, an MMOG from the South Korean game studio

NCSoft, no user created mods or user interface add-ons are allowed. Attempting to

incorporate such changes would therefore conflict with its end-user license

agreements (EULA) and subsequently put such user-modders at risk of losing their

access to networked Aion multi-player game play. In contrast, the MMOG World of

Warcraft (WoW) allows for UI customization mods and add-ons only, but no other

game conversions, no reverse engineering game engine, and no activity intended to

bypass WoW's encryption mechanisms. And, in one more variation, for games like

Unreal Tournament, Half-Life, NeverWinterNights, Civilization and many others, the

EULAs encourage modding and the free redistribution of mods without fee to others

who must have a licensed game copy, but do not encourage reverse engineering or

redistribution of the game engine required to run the mods. This restriction in turn

helps game companies realize the benefit of increased game sales by players who

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 84 -
k^s^i=mlpqdo^ar^qb=p`elli=

want to play with known mods, rather than with the unmodded game as sold at retail.

Thus, mods help improve game software sales, revenue, and profits for the game

development studio, publisher, and retailer.

3. Machinima

Machinima can be viewed as the product of modding efforts that intend to

modify the visual replay of game usage sessions. Machinima employ computer

games as their creative media, such that these new media are mobilized for some

other purpose (e.g., creating online cinema or interactive art exhibitions). Machinima

focuses attention to playing and replaying a game for the purpose of story telling,

movie making, or retelling of a daunting or high efficiency game play/usage

experience (Marino, 2004). Machinima is a form of modding the experience of

playing a specific game through a recording of its visual play session history so as to

achieve some other ends beyond the enjoyment (or frustration) of game play. These

play-session histories can then be further modded via video editing or remixing with

other media (e.g., audio recordings) to better enable cinematic storytelling or

creative performance documentation. Machinima is thus a kind of play/usage history

process re-enactment (cf. Scacchi, 1998) whose purpose may be documentary

(replaying what the player saw or experienced during a play session) or cinematic

(creatively steering a play session so as to manifest observable play process

enactments that can be edited and remixed off-line to visually tell a story). Thus,

machinima mods are a kind of extension that is not bound to the architecture of the

underlying game system, except for how the game facilitates a user's ability to

structure and manipulate emergent game play to realize a desired play process

enactment history.

4. Hacking Closed Game Systems

Hacking a closed game system is a practice whose purpose oftentimes

seems to be in direct challenge to the authority of commercial game developers that

represent large, global corporate interests. Hacking proprietary game software is

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 85 -
k^s^i=mlpqdo^ar^qb=p`elli=

often focused not so much on how to improve competitive advantage in multi-player

game play, but instead is focused on expanding the range of experiences that users

may encounter through use of alternative technologies (Huang, 2003; Scacchi,

2004). For example, Huang's (2003) study instructs readers in the practice of

“reverse engineering” as a strategy to understand both how a game platform was

designed and how it operates in fine detail, as a basis for developing new innovative

modifications or original platform designs, such as installing and running a Linux

open source operating system (instead of Microsoft's proprietary closed source

offering). Although many game developers seek to protect their intellectual property

(IP) from reverse engineering through EULA whose terms attempt to prohibit such

action under threat of legal action, reverse engineering is not legally prohibited nor

discouraged by the courts. Consequently, the practice of modding closed game

systems is often less focused on enabling players to achieve competitive advantage

when playing retail computer games, but instead may encourage those few so

inclined for how to understand and ultimately create computing innovations through

reverse engineering or other DIY game system modifications. Thus, closed game

system modding is a style of software extension by game modders who are willing

to forego the “protections” and quality assurances that closed game system

developers provide, in order to experience the liberty, skill, and knowledge

acquisition, as well as the potential to innovate, that mastery of reverse engineering

affords. Consequently, players/modders who are willing to take responsibility for

their actions (and not seek to defraud game developers or publishers due to false

product failure warranty claims or copyright infringement) can enjoy the freedom to

learn how their gaming systems work in intimate detail and potentially learn about

game system innovation through discovery and reinvention with the support of

others who are like-minded (cf. Scacchi, 2007).

Finally, games are one of the most commonly modified types of software that

are transformed into “pirated games” that are “illegally downloaded.” Such game

modding practice is focused on engaging a kind of meta-game that involves

modding game IP from closed to (more) open. Thus, game piracy has become

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 86 -
k^s^i=mlpqdo^ar^qb=p`elli=

recognized as a collective, decentralized, and placeless endeavor (i.e., not a

physical organization) that relies on torrent servers as its underground distribution

venue for pirated game software. As recent surveys of torrent-based downloads

reveal, in 2008 the top 10 pirated games represented about 9 million downloads,

while in 2009 the top 5 pirated games represented more than 13 million downloads,

and in 2010 the top 5 pirated games approached 20 million, all suggesting a

substantial growth in interest in and access to such modded game products. Thus,

we should not be surprised by the recent efforts by game system hackers that

continue to demonstrate the vulnerabilities of different hardware and software-based

techniques to encrypt and secure closed game systems from would be hackers.

However, it is also very instructive to learn from these exploits how difficult it is to

engineer truly secure software systems, whether such systems are games or some

other type of application or package.

D. Game Modding Software tools and Support

Games are most often modded with tools that provide access to an

unencrypted representation of the game software or game platform. Such a

representation is accessed and extended via a domain-specific (scripting) language.

Although it might seem the case that game vendors would seek to discourage users

from acquiring such tools, we observe a widespread contrary pattern.

Game system developers are increasingly offering software tools for

modifying the games they create or distribute as a way to increase game sales and

market share. Game/domain-specific Software Development Kits (SDKs) provided to

users by game development studios represent a contemporary business strategy for

engaging users to help lead product innovation from outside the studio. Once Id

Software, maker of the DOOM and Quake game software product line, and also Epic

Games, maker of the Unreal software game product line, started to provide

prospective game players/modders with software tools that would allow them to edit

game content, play mechanics, rules, or other functionality, other competing game

development studios were pressured to make similar offerings or face a possible

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 87 -
k^s^i=mlpqdo^ar^qb=p`elli=

competitive disadvantage in the marketplace. However, these tools do not provide

access to the underlying source code that embodies the proprietary game engine—a

large software program infrastructure that coordinates computer graphics, user

interface controls, networking, game audio, access to middleware libraries for game

physics, and so forth. However, the complexity and capabilities of such a tool suite

mean that any one, or better said, any game development or modding team, can

now access modding tools or SDKs to build commercial-quality games. However,

mastering these tools appears to be a significant undertaking likely to be of interest

only to highly committed, would-be game developers who are self-supported or self-

organized.

In contrast to game modding platforms provided by game development

studios, there are also alternatives provided by the end-user community. One

approach can be seen with facilities provided in Garry's Mod mod-making package

that you can use to construct a variety of fanciful contraptions as user created art

works, or to create comic books, program game conversions, and produce other

kinds of user created content. However, this package requires that you own a

licensed game like Counter-Strike: Source, Half-Life2 or Day of Defeat: Source from

Valve Software.

A different approach to end-user game development platforms can be found

arising from free/open source software games and game engines. The DOOM and

Quake games and game engines were released as free software subject to the GPL

once they were seen by Id Software as having reached the end of their retail product

cycle. Hundreds of games/engines have been developed and released for download

starting from the free/open source software that was the platform of the original

games. However, the content assets for many of these games (e.g., in-game

artwork) are not covered by the GPL, and so user-developers must still acquire a

licensed copy of the original game if its content is to be reused in some way.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 88 -
k^s^i=mlpqdo^ar^qb=p`elli=

Nonetheless, some variants of the user-created GPL'd games now feature their own

content that is limited/protected by Creative Commons licenses.

E. Opportunities for Modding and Software Engineering

Game modding demonstrates the practical value of software extension as a

user-friendly approach to custom software. Such software can extend games open

to modding into diverse product lines that flourish through reliance on domain-

specific game scripting languages and integrated software development kits.

Modding also demonstrates the success of end-users learning how to extend

software to create custom user interface add-ons, system conversions, replayable

system usage documentaries and movies, as well as to discover security

vulnerabilities. Therefore, game modding represents a viable form of end-user

engineering of complex software that may be transferable to other domains.

Acknowledgements

The research described in this paper has been supported by grants #0808783

and #1041918 from the U.S. National Science Foundation and grants #N00244-10-

1-0064 and #N00244-10-1-0077 from the Acquisition Research Program at the

Naval Postgraduate School. No review, approval, or endorsement is implied.

References

Batory., D., Johnson, C., MacDonald, B., & von Heeder, D. (2002). Achieving
extensibility through product lines and domain specific languages: A case
study. ACM Trans. Software Engineering and Methodology, 11(2), 191–214.

Burnett, M., Cook, C., & Rothermel, G. (2004). End-user software engineering.
Communications ACM, 47(9), 53–58.

El-Nasr, M. S., & Smith, B. K. (n.d.). Learning through game modding. ACM
Computers in Entertainment, 4(1). Article 3B.

Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern web
architecture. ACM Trans. Internet Technology, 2(2), 115–150.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - 89 -
k^s^i=mlpqdo^ar^qb=p`elli=

Huang, A. (2003). Hacking the Xbox: An introduction to reverse engineering. San
Francisco, CA: No Starch Press.

Henttonen, K., Matinlassi, M., Niemela, E., & Kanstren, T. (2007). Integrability and
extensibility evaluation in software architectural models—A case study. The
Open Software Engineering Journal, 1(1), 1–20.

Narayanaswamy, K., & Scacchi, W. (1987). Maintaining evolving configurations of
large software systems. IEEE Trans. Software Engineering, SE-13(3), 324–
334.

Leveque, T., Estublier, J., & Vega, G. (2009). Extensibility and modularity for model-
driven engineering environments. In Proceedings of the 16th IEEE Conference
on Engineering Computer-Based Systems (ECBS 2009; pp. 305–314).

Marino, P. (2004). 3D game-based filmmaking: The art of machinima. Scottsdale,
AZ: Paraglyph Press.

Parnas, D. L. (1979). Designing software for ease of extension and contraction.
IEEE Trans. Software Engineering, SE-5(2), 128–138.

Scacchi, W. (1998). Modeling, integrating, and enacting complex organizational
processes. In K. Carley, L. Gasser, & M. Prietula (Eds.), Simulating
organizations: Computational models of institutions and groups (pp. 153–
168). Cambridge, MA: MIT Press.

Scacchi, W. (2002, February). Understanding the requirements for developing open
source software. IEE Proceedings—Software Engineering, 149(1), 24–39.
Revised version in K, Lyytinen, P. Loucopoulos, J. Mylopoulos, and W.
Robinson (Eds.), Design Requirements Engineering: A Ten-Year Perspective,
LNBIP 14, Springer-Verlag, 467-494, 2009.

Scacchi, W. (2004, January/February). Free/open source software development
practices in the game community. IEEE Software, 21(1), 59–67.

Scacchi, W. (2007). Free/open source software development: Recent research
results and emerging opportunities. In Proceedings of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering (pp. 459–468). Dubrovnik, Croatia.

Scacchi, W. (2010). Game-based virtual worlds as decentralized virtual activity
systems. In W. S. Bainbridge (Ed.), Online worlds: Convergence of the real
and the virtual (pp. 225–236). New York: Springer.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 90 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 91 -
k^s^i=mlpqdo^ar^qb=p`elli=

V. Final Report Discussion and Prospects for
Future Acquisition Research

Walt Scacchi and Thomas A. Alspaugh
Institute for Software Research.

University of California, Irvine USA

A. Overview

Overall, our efforts developed in this research project and described in this

report sought to articulate the acquisition research problem with respect to the

issues identified above in order to determine what types or kinds of answers can be

realized through this investigation. Subsequently, our efforts focused on the

following four activities:

 Investigating the interactions between software system acquisition
guidelines, software system requirements, requirements for OSS, and
consequences of alternative software system architectures that
incorporate different mixes of OSS components, SPLs with open APIs
and open standards (Scacchi & Alspaugh, 2008; Alspaugh, Asuncion,
& Scacchi, 2009a, 2009b, 2009c; Scacchi, Alspaugh, & Asuncion,
2010). This entails exploring the balance between development,
verification, and validation of property and security rights, as well as
contractual obligations within continuously improving OSS system
elements while managing the evolution of OA systems at design-time,
build-time, and release and run-time.

 Developing and refining the formal foundations for establishing
acquisition guidelines for use by program managers seeking to provide
software-intensive systems in cost reducing ways that rely on
development and deployment of secure OA systems using OSS and
SPL technology and processes (Alspaugh et al., 2009c).

 Developing concepts for the design of a comprehensive automated
system that can support acquisition of OA systems so as to determine
their conformance to acquisition guidelines/policies, contracts, and
related license management issues (Alspaugh et al., 2009a; Asuncion,
2009).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 92 -
k^s^i=mlpqdo^ar^qb=p`elli=

 Documenting and presenting final results (Scacchi & Alspaugh, 2011)
at the 8th Annual Acquisition Research Conference, in Monterey, CA,
May 2011, as well as at related research venues and publications
where we can elicit the strongest critical feedback on our research
efforts and results.

B. Inter-Project Research Coordination

We continue to believe that we are extremely well positioned to continue to

leverage our recent research work and results (Scacchi & Alspaugh, 2008; Alspaugh

et al., 2009a, 2009b, 2009c; Scacchi et al., 2010) with the effort described here. We

continued to build on our recent research efforts in OSS (Scacchi, 2007, 2011a,

2011b) and software requirements-architecture interactions (Asuncion, 2009;

Scacchi, 2009; Scacchi & Alspaugh, 2008), as well as our track record in prior

acquisition research studies. Similarly, we find current related research supported by

the Department of Defense (DoD) addressing related issues in OSS (Hissam,

Weinstock, & Bass, 2010) also influences our proposed effort. In addition, our effort

builds from and contributes to research on software system acquisition within the

DoD, whether focusing on SPLs (Bergey & Jones, 2010; Guertin & Clements, 2010),

or on how to improve software system acquisition through workforce upgrades and

government-industry teaming (Heil, 2010). Thus, we believe that our complementary

research places us at an extraordinary advantage to conduct the proposed study

that addresses a major strategic acquisition goal of the DoD and the three military

Services (Starrett, 2007; Weathersby, 2007; Wheeler 2007).

C. Prospects for Longer Term Acquisition-Related Research

Each of the military Services has committed to orienting their major system

acquisition programs around the adoption of an OA strategy that in turn embraces

and encourages the adoption, development, use, and evolution of OSS. Thus, it

would seem there is a significant need for sustained research that investigates the

interplay and inter-relationships between (a) current/emerging guidelines for the

acquisition of software-intensive systems within the DoD community (including

contract management and software development issues) and (b) how software

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 93 -
k^s^i=mlpqdo^ar^qb=p`elli=

systems that employ an OA incorporating OSS products and production processes

are essential to improving the effectiveness of future, software-intensive program

acquisition efforts. Consequently, we have focused our research project, and the

results appearing in this final report, to continue to lay new foundations for long-term

acquisition-related research in support of the Acquisition Research Program based

at the Naval Postgraduate School.

Acknowledgments

The research described in this Final Report is supported by grant #N00244-

10-1-0077 from the Acquisition Research Program at the Naval Postgraduate

School.

References

Alspaugh, T. A, Asuncion, H., & Scacchi, W. (2009a, May). Analyzing software
licenses in open architecture software systems. Workshop on Emerging
Trends in FLOSS Research and Development, International Conference on
Software Engineering, Vancouver, Canada.

Alspaugh, T. A, Asuncion, H., & Scacchi, W. (2009b, May). Software licenses, open
source components, and open architectures. In Proceedings of the 6th Annual
Acquisition Research Symposium (NPS-AM-09-026). Monterey, CA: Naval
Postgraduate School.

Alspaugh, T. A, Asuncion, H., & Scacchi, W. (2009c, September). Intellectual
property rights requirements for heterogeneously licensed systems. In
Proceedings of the 17th International Conference on Requirements
Engineering (RE09; pp. 24–33). Atlanta, GA.

Alspaugh, T. A., Asuncion, H. & Scacchi, W. (2011, July). Presenting software
license conflicts through argumentation. 22nd International Conference on
Software Engineering and Knowledge Engineering (SEKE2011), Miami, FL.

Bergey, J., & Jones, L. (2010). Exploring acquisition strategies for adopting a
software product line approach. In Proceedings of the 7th Annual Acquisition
Research Symposium (Vol. 1, pp. 111–122). Monterey, CA: Naval
Postgraduate School.

Guertin, N. & Clements, P. (2010). Comparing acquisition strategies: Open
architecture versus product lines. In Proceedings of the 7th Annual Acquisition

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 94 -
k^s^i=mlpqdo^ar^qb=p`elli=

Research Symposium (Vol. 1, pp. 78–90). Monterey, CA: Naval Postgraduate
School.

Heil, J. (2010). Enabling software acquisition improvement: Government and
industry software development team acquisition model. In Proceedings of the
7th Annual Acquisition Research Symposium (Vol. 1, pp. 203–218). Monterey,
CA: Naval Postgraduate School.

Hissam, S., Weinstock, C. B., & Bass, L. (2010). On open and collaborative software
development in the DoD. In Proceedings of the 7th Annual Acquisition
Research Symposium (Vol. 1, pp. 219–235). Monterey, CA: Naval
Postgraduate School.

Scacchi, W. (2007). Free/open source software development: Recent research
results and methods. In M. Zelkowitz (Ed.), Advances in Computers, 69, 243–
295.

Scacchi, W. (2009). Understanding requirements for open source software. In K.
Lyytinen, P. Loucopoulos, J. Mylopoulos, & W. Robinson (Eds.), Design
requirements engineering: A ten year perspective (pp. 467–494). LNBIP 14,
Springer Verlag.

Scacchi, W. (2011a, May). Modding as a basis for developing game systems. 1St
Workshop Games and Software Engineering (GAS'11), 33rd International
Conference on Software Engineering, Waikiki, Honolulu, HI.

Scacchi, W. (2011b, October). Modding as an open source approach to extending
computer game systems. In S. Hissam, B. Russo, M. G. de Mendonca Neto,
& F. Kan (Eds.), Open source systems: Grounding research. In Proceedings
of the 7Th IFIP International Conference on Open Source Systems (pp. 62–
74). IFIP ACIT 365, (Best Paper award), Salvador, Brazil.

Scacchi, W., & Alspaugh, T. (2008, May). Emerging issues in the acquisition of open
source software within the U.S. Department of Defense. In Proceedings of the
5th Annual Acquisition Research Symposium (NPS-AM-08-036). Monterey,
CA: Naval Postgraduate School.

Scacchi, W., & Alspaugh, T. (2011, May). Advances in the acquisition of secure
systems based on open architectures. 8Th Annual Acquisition Research
Symposium, Monterey, CA, Naval Postgraduate School.

Scacchi, W., Alspaugh, T., & Asuncion, H. (2010, May). The challenge of
heterogeneously licensed systems in open architecture software ecosystems.
In Proceedings of the 7th Annual Acquisition Research Symposium (Vol. 1,
pp. 91–110). Monterey, CA: Naval Postgraduate School.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 95 -
k^s^i=mlpqdo^ar^qb=p`elli=

Starrett, E. (2007, May). Software acquisition in the Army. Crosstalk: The Journal of
Defense Software Engineering, 48. Retrieved from
http://stsc.hill.af.mil/crosstalk

Weathersby, J. M. (2007, June). Open source software and the long road to
sustainability within the U.S. DoD IT system. The DoD Software Tech News,
10(2), 20–23.

Wheeler, D. A. (2007, June). Open source software (OSS) in U.S. Government
acquisitions. The DoD Software Tech News, 10(2), 7–13.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 96 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2011 Sponsored Research Topics

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 BCA: Contractor vs. Organic Growth

 Defense Industry Consolidation

 EU-US Defense Industrial Relationships

 Knowledge Value Added (KVA) + Real Options (RO) Applied to
Shipyard Planning Processes

 Managing the Services Supply Chain

 MOSA Contracting Implications

 Portfolio Optimization via KVA + RO

 Private Military Sector

 Software Requirements for OA

 Spiral Development

 Strategy for Defense Acquisition Research

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies

 Contracting Government Procurement Functions

 Contractors in 21st-century Combat Zone

 Joint Contingency Contracting

 Model for Optimizing Contingency Contracting, Planning and Execution

 Navy Contract Writing Guide

 Past Performance in Source Selection

 Strategic Contingency Contracting

 Transforming DoD Contract Closeout

 USAF Energy Savings Performance Contracts

 USAF IT Commodity Council

 USMC Contingency Contracting

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

Financial Management

 Acquisitions via Leasing: MPS case

 Budget Scoring

 Budgeting for Capabilities-based Planning

 Capital Budgeting for the DoD

 Energy Saving Contracts/DoD Mobile Assets

 Financing DoD Budget via PPPs

 Lessons from Private Sector Capital Budgeting for DoD Acquisition
Budgeting Reform

 PPPs and Government Financing

 ROI of Information Warfare Systems

 Special Termination Liability in MDAPs

 Strategic Sourcing

 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment

 Individual Augmentation

 Learning Management Systems

 Moral Conduct Waivers and First-tem Attrition

 Retention

 The Navy’s Selective Reenlistment Bonus (SRB) Management System

 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance

 Army LOG MOD

 ASDS Product Support Analysis

 Cold-chain Logistics

 Contractors Supporting Military Operations

 Diffusion/Variability on Vendor Performance Evaluation

 Evolutionary Acquisition

 Lean Six Sigma to Reduce Costs and Improve Readiness

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

 Naval Aviation Maintenance and Process Improvement (2)

 Optimizing CIWS Lifecycle Support (LCS)

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance
Activity

 Pallet Management System

 PBL (4)

 Privatization-NOSL/NAWCI

 RFID (6)

 Risk Analysis for Performance-based Logistics

 R-TOC AEGIS Microwave Power Tubes

 Sense-and-Respond Logistics Network

 Strategic Sourcing

Program Management

 Building Collaborative Capacity

 Business Process Reengineering (BPR) for LCS Mission Module
Acquisition

 Collaborative IT Tools Leveraging Competence

 Contractor vs. Organic Support

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to AEGIS and SSDS

 Managing the Service Supply Chain

 Measuring Uncertainty in Earned Value

 Organizational Modeling and Simulation

 Public-Private Partnership

 Terminating Your Own Program

 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

